Changes for the Better

CNC **MELD/IS C6/C64/C64T**

PARAMETER MANUAL

MELDAS and MELSEC are registered trademarks of Mitsubishi Electric Corporation. Microsoft and Windows are a registered trademark of Microsoft Corporation in the United States and/or other countries.

Other brands and product names throughout this manual are trademarks or registered trademarks of their respective holders.

Introduction

This manual is a guide of the parameters used with the CNC MELDAS C6/C64/C64T. This manual is written on the assumption that all machine parameters of the MELDAS C6/C64/C64T are provided. However, the CNC may not necessarily be provided with all of the options. When the system is used, therefore, reference should be made to the Specifications Manual issued by the machine maker.

Points to be observed when reading this manual

- (1) This manual contains general descriptions as seen from the standpoint of NC (numerical control) and thus refer to the Instruction Manual issued by the machine maker for descriptions of individual machine tools. The Instruction Manual issued by the machine maker takes precedence over this manual when any mention of "restrictions", "usable states" or such details are mentioned.
- (2) As much information as possible on special procedures has been included in this manual, and it may be considered that any procedures not mentioned cannot be undertaken.
- (3) Also refer to the following manuals.
 - MELDAS C6/C64/C64T Instruction Manual..... BNP-B2259
 - MELDAS C6/C64/C64T Programming Manual (Machining center/Transfer machine system)....... BNP-B2260
 - MELDAS C6/C64/C64T Programming Manual (Lathe system) BNP-B2264
 - MELDAS AC Servo MDS-B-Vx Series Servo Parameter Manual...... BNP-A2993
 - MELDAS AC Servo MDS-C1 Series Specification Manual...... BNP-C3000

- For items described as "Restrictions" or "Usable State" in this manual, the Instruction Manual issued by the machine maker takes precedence over this manual.
- ▲ Items that are not described must be interpreted as "not possible".
- This manual is written on the assumption that all option functions are added. Refer to the Specifications Manual issued by the machine maker before starting use.
- Refer to the manuals issued by the machine manufacturer for each machine tool explanation.
- Some screens and functions may differ or may not be usable depending on the NC system version.

Precautions for Safety

Always read the Specifications Manual issued by the machine maker, this manual, related manuals and attached documents before installation, operation, programming, maintenance or inspection to ensure correct use. Understand this numerical controller,

safety items and cautions before using the unit.

This manual ranks the safety precautions into "DANGER", "WARNING" and "CAUTION".

When the user may be subject to imminent fatalities or major injuries if handling is mistaken.

When the user may be subject to fatalities or major injuries if handling is mistaken.

When the user may be subject to injuries or when physical damage may occur if handling is mistaken.

Note that even items ranked as " A CAUTION", may lead to major results depending on the situation.

In any case, important information that must always be observed is described.

Not applicable in this manual.

Not applicable in this manual.

1. Items related to product and manual

- For items described as "Restrictions" or "Usable State" in this manual, the Instruction Manual issued by the machine maker takes precedence over this manual.
- 1 Items that are not described must be interpreted as "not possible".
- A This manual is written on the assumption that all option functions are added. Refer to the Specifications Manual issued by the machine maker before starting use.
- 1 Refer to the manuals issued by the machine manufacturer for each machine tool explanation.
- A Some screens and functions may differ or may not be usable depending on the NC system version.

	CAUTION			
2. Item	s related to servo/spindle parameters			
	actually performed when the power (200V) is turned ON. Thus, when changing some			
<u>∧</u>	 parameters unique to each amp, an alarm "7F" occurs and requests to turn the power ON again. Note that the alarm "7F" may occur when the amp is mounted on the machine for the first time. When the alarm "7F" occurs, turn the power ON again. The alarm "7F" may not occur at second turning ON or later unless the above-mentioned parameters are changed. With MDS-C1 series, only the serial encoder is applied as the motor end detector. Thus, OHE/OHA type detector cannot be used as the motor end detector. Do not make remarkable adjustments or changes of the parameters as the operation may became unstable. 			
3. Item	s related to the other parameters			
9	When setting the parameter (#6449/bit6, 7) not to check the overheat, the control unit and the communication terminal may not be controlled because of overheat. In such case, axis runaway may cause a machine breakage, an accident resulting in injury or death, or device breakage. To prevent the serious results, ordinarily set the parameters so that the overheat check is valid.			

CONTENTS

	reens	
	ameters	
	ce Coordinate Offset	
2.2 Process	Parameters	4
2.3 Control	Parameters	6
2.4 Axis Par	ameters	7
2.5 Barrier D	Data	8
3. I/O Parameter	S	9
3.1 Base Pa	arameters	9
3.2 I/O Devi	ce Parameters	
4. Setup Parame	ters	14
5. Base Specifica	ations Parameters	
6. Axis Specifica	tions Parameters	
6.1 Axis Spe	ecifications Parameters	
6.2 Zero Po	int Return Parameters	73
	e Position Parameters	
6.4 Axis Spe	ecifications Parameters 2	77
7. Servo Parame	ters	
7.1 MDS-B-	SVJ2	
7.2 MDS-C1	I-Vx High-gain (MDS-B-Vx4 Compatible)	
7.3 MDS-C1	I-Vx Standard Specification (MDS-B-Vx Compatible)	
	nent	
7.4.1 D	/A Output Specifications	
	lectronic Gears	
	ost Motion Compensation	
8. Spindle Param	neters	174
	Base Specifications Parameters	
	SPJ2	
	SP/SPH, MDS-C1-SP/SPH	
	I-SPM	
	nent	
	/A Output Specifications	
	Compensation	
	Outline	
	Compensation Data	
	e in Using a Linear Axis as the Base Axis	
	e in Using a Rotation Axis as the Base Axis	
	nts	
	mer	
	ounter	
	onstants	
	t Selection	
	of Function	
	ling the Position Switch	
	Parameters Position Switch	
	of Function	
	Commands	
•	s Parameters	
· · · · · · · · · · · · · · · · · · ·		

1. Parameter Screens

The parameter input setting units are as follow.

Input unit	Linear axis "	#1017 rot"=0	Rotary axis
"#1003 iunit"	Machine constant:mm "#1040 M_inch"=0	Machine constant:inch "#1040 M_inch"=1	"#1017 rot"=1
В	0.001 mm	0.0001 inch	0.001°
С	0.0001 mm	0.00001 inch	0.0001°

(1) User parameters

The following menus can be selected when the key PARAM is pressed.

Menu	Details		Reference Section
WORK	The WORK OFFSET screen will open.	2.1	Workpiece Coordinate Offset
PROCESS	The PROCESS PARAM screen will open.	2.2	Process Parameters
		2.3	Control Parameters
		2.4	Axis Parameters
		2.5	Barrier Data
I/O PARAM	The I/O PARAM screen will open.	3.1	Base Parameters
		3.2	I/O Device Parameters
SETUP	The screen to set the setup parameters will open.	4.	Setup Parameters

(2) Setup Parameters

The following menus can be selected when SETUP is selected. (Refer to the section "4. Setup Parameters" for details.

Menu	Details		Reference Section
BASE	The BASE SPEC. PARAM screen will open.	5.	Base Specifications Parameters
AXIS SPEC	The AXIS SPEC PARAM screen will open.	6.	Axis Specifications Parameters
SERVO	The SERVO PARAM screen will open.	7.	Servo Parameters
SPINDLE	The SPINDLE BASE SPEC. PARAM screen will open.	8.	Spindle Parameters
MC-ERR	The MC-ERR. CMP. screen will open.	9.	Machine Error Compensation
PLC	The PLC DATA screen will open.	10.	PLC Constants
MACRO	The MACRO FILE screen will open.	11.	Macro List
PSW	The POSITION SWITCH screen will open.	12.	Position Switch
IDX-PRM	The INDEXING AXIS PARAMETERS screen will open.	13.	Indexing Axis Parameters
IDX-PSW	The INDEXING AXIS POSITION SWITCH screen will open.	14.	Indexing Axis Position Switch
IDX-CMD	The INDEXING AXIS COMMANDS screen will open.	15.	Indexing Axis Commands

(3) The following menus can be selected when the key ALARM DIAGN is pressed.

Menu	Details		Reference Section
AUX-PRM	The AUX-PARA screen will open.	16.	Auxiliary Axis Parameter

2. Machining Parameters

2.1 Workpiece Coordinate Offset

#	Parameter	Explanation	Setting range (unit)
54	G54 offset	Set the workpiece coordinate system and external workpiece coordinate offset values from G54 to G59. The workpiece coordinate system offset data can	±99999.999 (mm)
55	G55 offset	be set as an absolute value or incremental value.	
56	G56 offset	Coordinate system	
57	G57 offset	G55 W2 W2 W2 W2 W2 W2 W2 W2 W2 W2 W2 W2 W2	
58	G58 offset	G54W1	
59	G59 offset	workpiece ! ! coordinate system	
60	EXT offset		

2.2 Process Parameters

<WRK COUNT> (No. of workpieces machined)

#	ltem	Contents	Setting range (unit)
8001	WRK COUNT M	Set the M code that counts the No. of workpiece repeated machining.	0 to 99
		The No. will not be counted when set to 0.	
8002	WRK COUNT	The current machining No. is displayed. Set the initial value.	0 to 999999
8003	WRK LIMIT	Set the maximum No. of workpieces machined. A signal is output to PLC when the No. of machining times is counted to this limit.	0 to 999999

<AUTO TLM> (Automatic tool length measurement)

#	Item	Contents	Setting range (unit)
8004	SPEED	Set the feedrate during automatic tool length	1 to 1000000
		measurement.	(mm/min)
8005	ZONE r	Set the distance between the measurement position	0 to 99999.999 (mm)
		and deceleration start point.	
8006	ZONE d	Set the tolerable zone of the measurement position.	0 to 99999.999 (mm)
		If the sensor signal turns on in front of d before the	
		measurement position, or if the signal does not turn	
		on after d is passed, an alarm will occur.	

<AUTO CORNER OVR> (Automatic corner override)

#	ltem	Contents	Setting range (unit)
8007	OVERRIDE	Set the override value for automatic corner override.	0 to 100 (%)
8008	MAX ANGLE	Set the max. corner opening angle where deceler- ation should start automatically. If the angle is larger than this value, deceleration will not start.	0 to 180 (degrees)
8009	DSC. ZONE	Set the position where deceleration starts at the corner. Designate at which length point before the corner deceleration should start.	0 to 99999.999 (mm)

<T-TIP OFFSET> (Wear data input)

#	Item	Contents	Setting range (unit)
8010	ABS. MAX. (For L system only)	Set the max. value when inputting the tool wear compensation amount. A value exceeding this setting value cannot be set.	0 to 99.999 (mm)
8011	INC. MAX. (For L system only)	Set the max. value for when inputting the tool wear offset amount in the addition mode.	0 to 99.999 (mm)

<FIXED C.> (Fixed cycle)

#	Item	Contents	Setting range (unit)
8012	G73 n	Set the return amount for G73 (step cycle).	0 to 99999.999 (mm)
	(For M system only)		
8013	G83 n	Set the return amount for G83 (deep hole drilling	0 to 99999.999 (mm)
	<u></u>	cycle).	
8014	CDZ-VALE	Set the screw cut up amount for G76, 78 (thread	0 to 127
	(For L system only)	cutting cycle).	(0.1 lead)
8015	CDZ-ANGLE	Set the screw cut up angle for G76, 78 (thread	0 to 89 (degrees)
	(For L system only)	cutting cycle).	
8016	G71 MINIMUM	Set the minimum cut amount for the final cutting in	0 to 99.999 (mm)
	(For L system only)	G71, 72 (rough cutting cycle).	
		If the final cutting amount is smaller than this value,	
		the final cut will not be performed.	
8017	DELTA-D	Set the change amount to the command cut amount	0 to 99.999 (mm)
	(For L system only)	D for G71, 72 (rough cutting cycle).	
		Each cut amount will be the value obtained by	
		adding or subtracting this value from command D,	
		and thus, the amount can be changed each cut.	
8018	G84/G74 return	Set up return length m at a G84/G74 pecking tap	0 to 99.999 (mm)
	(For M system only)	cycle.	
		(Note) Set 0 to specify a usual tap cycle.	

<PRECISION> (High precision control)

#	ltem	Contents	Setting range (unit)
8019	R COMP	Set up a compensation factor for reducing a control error in the reduction of a corner roundness and arch radius. Indicates a maximum control error (mm) in parentheses. The larger the setup value, the smaller the theoretical error will be. However, since the speed at the corner goes down, the cycle time is extended.	0 to 99 (%)
8020	DCC ANGLE	Set up the minimum value of an angle (external angle) that should be assumed to be a corner. When an inter-block angle (external angle) in high- precision mode is larger than the set value, it is determined as a corner and the speed goes down to sharpen the edge. If the set value is smaller than θ , the speed goes down to optimize the corner. (Note) If "0" is set, it will be handled as 5 degrees. The standard setting value is "0".	0 to 30 (degrees) 0: The angle will be 5 degrees.

2.3 Control Parameters

MACRO SINGLE	Select the control of the blocks where the user	
		0/1
	macro command continues.	
	0: Do not stop while macro block continues.	
	1: Stop every block during signal block operation.	
COLL. ALM OFF	Select the interference (bite) control to the	0/1
	workpiece from the tool diameter during cutter	
	compensation and nose R offset.	
	0: An alarm is output and operation stops when	
	an interference is judged.	
	1: Changes the path to avoid interference.	
COLL. CHK OFF	Select the interference (bite) control to the work	0/1
	from the tool diameter during cutter compensation	
	and nose R offset.	
	0: Performs interference check	
	1: Does not perform interference check	
EDIT LOCK B	Select the edit lock for program Nos. 8000 to 9999.	0/1
	0: Program can be edited.	
	1: Editing of above program is prohibited.	
G46 NO REV-ERR	Select the control for the compensation direction	0/1
(For L system only)	reversal in G46 (nose R offset).	
	0: An alarm is output and operation stops when	
	the compensation direction is reversed (G41	
	\rightarrow G42, G42 \rightarrow G41).	
	,	
	tion direction is reversed, and the current	
	compensation direction is maintained.	
R COMPENSATION		0/1
	-	
	command value.	
	1: In arc cutting mode, the machine compensates	
	- · ·	
	-	
R COMP Select		0/1
	0: Perform correction over all axes.	
	"#8107 R COMPENSATION" is 1.	
HOST LINK		0
	COLL. CHK OFF EDIT LOCK B G46 NO REV-ERR (For L system only) R COMPENSATION	workpiece from the tool diameter during cutter compensation and nose R offset. 0: An alarm is output and operation stops when an interference is judged. COLL. CHK OFF Select the interference (bite) control to the work from the tool diameter during cutter compensation and nose R offset. 0: Performs interference check 1: Does not perform interference check EDIT LOCK B Select the edit lock for program Nos. 8000 to 9999. 0: Performs interference check 1: Editing of above program is prohibited. G46 NO REV-ERR (For L system only) Select the control for the compensation direction reversal in G46 (nose R offset). 0: An alarm is output and operation stops when the compensation direction is reversed (G41 → G42, G42 → G41). 1: An alarm does not occur when the compensa- tion direction is reversed, and the current compensation direction is maintained. 0: In arc cutting mode, the machine moves to the inside because of a delay in servo response to a command, making the arc smaller than the command value. 1: In arc cutting mode, the machine compensates the movement to the inside because of a delay in servo response to a command R COMP Select Specify whether to perform arc radius error correction over all axes. 0: Perform correction over all axes. 1: Perform correction over all axes. 0: Perform correction over all axes. 0: Perform corre

2.4 Axis Parameters

#	ltem	Contents	Setting range (unit)
8201	AX. RELEASE	Select the function to remove the control axis from	0/1
		the control target.	
		0: Control as normal	
		1: Remove from control target	
8202	OT-CHECK OFF	Select the stored stroke limit function set in #8204	0/1
		and #8205.	
		0: Stored stroke limit valid	
		1: Stored stroke limit invalid	
8203	OT-CHECK-CANCEL	When the simple absolute position method ("#2049	0/1
		type" is 9) is selected, the stored stroke limits I, II (or	
		IIB) and IB will be invalid until the first reference	
		point return is executed after the power is turned on.	
		0: Stored stroke limit II valid (according to #8202)	
		1: Stored stroke limit II invalid	
		(Note) This setting (#8203) affects all the stored	
		stroke limits.	
8204	OT-CHECK-N	Set the coordinates of the (–) direction in the	-99999.999 to
		moveable range of the stored stroke limit II or the	+99999.999 (mm)
		lower limit coordinates of the prohibited range of	
		stored stroke limit IIB.	
		If the sign and value are the same as #8205 (other	
		than "0"), the stored stroke limit II (or IIB) will be	
		invalid.	
		If the stored stroke limit IIB function is selected, the	
		prohibited range will be between two points even	
		when #8204 and #8205 are set in reverse.	
		When II is selected, the entire range will be	
		prohibited.	
8205	OT-CHECK-P	Set the coordinates of the (+) direction in the	-99999.999 to
		moveable range of the stored stroke limit II or the	+99999.999 (mm)
		upper limit coordinates of the prohibited range of	
		stored stroke limit IIB.	
8206	TOOL CHG. P	Set the coordinates of the tool change position for	-99999.999 to
		G30. n (tool change position return).	+99999.999 (mm)
		Set with coordinates in the basic machine coordinate	
		system.	
8207	G76/87 IGNR	Select the shift operation at G76 (fine boring) and	0/1
	(For M system only)	G87 (back boring).	
		0: Shift effective	
		1: No shift	

#	ltem	Contents	Setting range (unit)	
8208	G76/87 (–)	Specify the shift direction at G76 and G87.	0/1	
	(For M system only)	0: Shift to (+) direction		
		1: Shift to (–) direction		
8209	G60 SHIFT	Set the last positioning direction and distance for a	-99999.999 to	
	(For M system only)	G60 (uni-directional positioning) command.	+99999.999 (mm)	
8210	OT INSIDE	The stored stoke limit function set in #8204 and	0/1	
		#8205 prevents the machine from moving to the		
		inside or outside of the specified range.		
		0: Inhibits outside area.		
		(select stored stroke limit II.)		
		1: Inhibits inside area.		
		(select stored stroke limit II B.)		

2.5 Barrier Data

#	ltem	Contents	Setting range (unit)
8300	P0	Set the reference X-coordinates of the chuck and	-99999.999 to
	(For L system only)	the tail stock barrier.	+99999.999 (mm)
		Set the center coordinate (Radius value) of	
		workpiece by the basic machine coordinate system.	
8301	P1	Set the area of the chuck and tail stock barrier.	-99999.999 to
8302	P2	(Radius value)	+99999.999 (mm)
8303	P3	Set the coordinate value from the center of workpiece	
8304	P4	for X-axis.	
8305	P5	Set the coordinate value by basic machine	
8306	P6	coordinate system for Z-axis.	
	(For L system only)		

3. I/O Parameters 3.1 Base Parameters

3. I/O Parameters

3.1 Base Parameters

<i 0=""></i>	#	<port no.=""></port>	#	<dev. no.=""> <dev. name=""></dev.></dev.>
		Specify the board No. to which the serial		Set the input/output device No. for
		input/output device is connected to each		each application.
		application.		The device Nos. are 0 to 4 and
				correspond to the input/output
				device parameters.
				The device name set in the
				input/output device parameter is
				also displayed for identification.
DATA IN	9001	Specify the port for inputting the data	9002	
		such as machine program and		inputs the data.
		parameters.		
DATA OUT	9003	Specify the port for outputting the data	9004	
		such as machine program and		outputs the data.
		parameters.		
TAPE MODE	9005		9006	
		the tape mode.		run with the tape mode.
MACRO	9007	Specify the output port for the user	9008	
PRINT		macro DPRINT command.		DPRINT command.
PLC IN/OUT	9009	Specify the port for inputting/outputting	9010	
		various data with PLC.		PLC input/output.
REMOTE	9011	Not used.	9012	Not used.
PROG IN				

3.2 I/O Device Parameters

Parameters for up to five types of input/output devices can be set in DEV <0> to <4>.

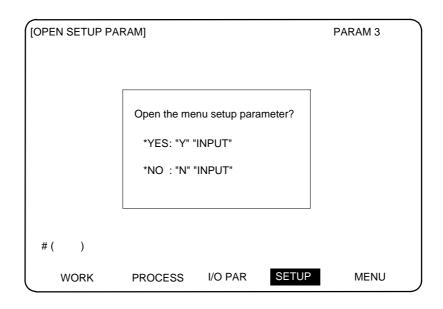
(Note) The parameters are set for each device.

9101 ~	Set the same settings for device 0.
9201 ~	Set the same settings for device 1.
9301 ~	Set the same settings for device 2.
9401 ~	Set the same settings for device 3.
9501 ~	Set the same settings for device 4.

#	ltem	Contents	Setting range (unit)
9101	DEVICE NAME 0	Set the device name corresponding to the device	Use alphabet
9201	DEVICE NAME 1	No.	characters, numerals
9301	DEVICE NAME 2	Set a simple name for quick identification.	and symbols to set a
9401	DEVICE NAME 3		name within 3
9501	DEVICE NAME 4		characters.
9102	BAUD RATE	Set the serial communication speed.	1:9600 (bps)
9202			2:4800
9302			3:2400
9402			4: 1200
9502			5: 600
			6: 300
			7: 150
9103	STOP BIT	Set the stop bit length used in the start-stop system.	1: 1 (bit)
9203			2: 1.5
9303			3: 2
9403			
9503			
9104	PARITY CHECK	Specify whether to add the parity check bit to the	0: Parity bit not added
9204		data during communication.	1: Parity bit added
9304			
9404			
9504			
9105	EVEN PARITY	Specify the odd or even parity when it is added to	0: Odd parity
9205		the data.	1: Even parity
9305			
9405			
9505			
9106	CHR. LENGTH	Set the length of the data bit.	0: 5 (bit)
9206			1: 6
9306			2: 7
9406			3: 8
9506			

#	Item	Contents	Setting range (unit)
9107	TERMINATOR TYPE	The code to terminate data reading can be selected.	0 and 3: EOR
9207			1 and 2: EOB or EOR
9307			
9407			
9507			
9108	HAND SHAKE	Specify the transmission control method.	1: RTS/CTS method
9208		The method will be no procedure if a value except 1	(This method can
9308		to 3 is set.	be used only for
9408			SIO2.)
9508			2: No procedure (No
			handshaking)
0.4.00			3: DC code method
9109	DC CODE PARITY	Specify the DC code when the DC code method is	0: No parity to DC
9209		selected.	code (DC3 = 13H)
9309			1: DC code with parity
9409			(DC3 = 93H)
9509 9111	DC2/DC4 OUTPUT	Creative DC code handling when averything data	DC2 / DC4
9111 9211	DC2/DC4 001P01	Specify the DC code handling when outputting data to the output device.	0: None / None
9211 9311			1: Yes / None
9411			2: None / Yes
9511			3: Yes / Yes
9112	CR OUTPUT	Specify whether to insert the <cr> code just before</cr>	
9212		the EOB (L/F) code during output.	1: Add
9312			1. //dd
9412			
9512			
9113	EIA Output	In data output mode, select the ISO or EIA code for	0: ISO code output
9213	•	data output.	1: EIA code output
9313		In data input mode, the ISO and EIA codes are	
9413		identified automatically.	
9513			
9114	FEED CHR.	Specify the length of the tape feed to be output at	0 to 999 (characters)
9214		the start and end of the data during tape output.	
9314			
9414			
9514			
9115	PARITY V	Specify whether to check the parity of the No. of	0: Do not perform
9215		characters in block during data input.	parity V check
9315		The No. of characters is factory-set so that the	1: Perform parity V
9415		check is valid at all times.	check
9515			

#	Item	Contents	Setting range (unit)
9116 9216 9316 9416 9516		Set the time out time to detect an interruption in communication. The time out is not checked when 0 is set, so the waiting time will be infinite. The screens cannot be changed during the waiting time. Set this time to 10 as the standard.	0 to 30 (s)
9117 9217 9317 9417 9517	DR OFF	Specify whether to check the DR data at the data input/output.	0: DR valid 1: DR invalid
9118 9218 9318 9418 9518	DATA ASC II	 0: Output in ISO/EIA code (Depends on whether #9113, #9213, #9313, #9413, or #9513 EIA output parameter is set up) 1: Output in ASC II code 	0/1
9119 9219 9319 9419 9519	INPUT FORM	 Specify the mode for input (collation). O: Standard input (Data from the very first EOB is handled as significant information.) 1: EOBs following the first EOB of the input data are skipped until data other than EOB is input. 	0/1
9121 9221 9321 9421 9521	EIA CODE [When outputting with the EIA codes, special ISO codes not included in EIA can be output with alternate codes. For each special code, designate a code (as a hexadecimal) that is not duplicated with existing EIA codes. (Continued on the next page.)	0 to FF (hexadecimal)
9122 9222 9322 9422 9522]		
9123 9223 9323 9423 9523	#		
9124 9224 9324 9424 9524	*		


#	ltem	Contents	Setting range (unit)
9125	=	(Continued from the previous page.)	
9225			
9325			
9425			
9525			
9126	:		
9226			
9326			
9426			
9526			
9127	\$		
9227			
9327			
9427			
9527			
9128	!		
9228			
9328			
9428			
9528			

4. Setup Parameters

Pressing the menu key ()SETUP) displays the OPEN SETUP PARAM screen.

The system's basic parameters are normally hidden as setup parameters to prevent mistaken operations and to simplify the display.

The setup parameters can be displayed and set by making a declaration to open the setup parameters on this screen.

- Select the setup parameter. Key-in in # (), and then press INPUT. The basic specification parameter screen appears and the normally hidden setup parameter menu will display. The required menu can be selected to display and set the setup parameters.
- 2) Cancel the setup parameter selection.
 Key-in N in # (), and then press INPUT.
 The setup parameter menu will disappear.
 (Note) The setup parameters are not displayed when the power is turned on.

Refer to "5. Base Specifications Parameters" and following for details on the setup parameters. Be sure to turn off the power supply after selecting the setup parameter.

5. Base Specifications Parameters

After setting up the parameter (PR) listed in the table, turn off the NC power. To validate the parameter, turn on the power again.

#			Setting range (unit)	
1001	SYS_ON	Part system	Specify the presence of the PLC axes and the 1st to	0: Not used
(PR)		validation	7th part systems with 1 or 0.	1: Used
		setup		
1002	axisno	Number of	Set No. of axes in each part system and the No. of PLC	0 to 14
(PR)		axes	axes.	
			Set so that the total of the NC axes and PLC axes is	
			less than the maximum number of controllable axes.	
	iunit	Input setup	Specify the input setting value for each part system	B: 1 μm
(PR)		unit	and the PLC axis. The parameter units will follow this	C: 0.1 µm
			specification.	
1013	axname	Axis name	Specify each axis' name address with an alphabetic	Axis addresses
			character.	such as X, Y, Z, U,
			Use the characters X, Y, Z, U, V, W, A, B or C.	V, W, A, B, and C
			Do not specify the same address in one part system.	
			The same address can be specified as the other part	
			system.	
			The PLC address does not need to be set. (The axis	
			name is displayed as 1 and 2.)	
1014	incax	Increment	When specifying the program movement rate's	
		command	absolute or incremental method with an address,	
		axis name	specify the incremental command axis name address	
			with an alphabetic character.	
			The address that can be used is the same as "#1013 axname".	
			Specify an address that is different from that #1013.	
			Setting is not required if absolute/incremental command	
			with addresses is not performed ("#1076 AbsInc" = 0).	
1015	cunit	Command	Specify the minimum unit of the program movement	
(PR)	cum	unit	amount.	10 1 μ <i>m</i>
(111)		unit	cunit Movement amount for movement command 1	100 10 μm
			10: 0.001 mm (1 μm)	1000 100 μm
			100: 0.01 mm (10 μ m)	10000 1 mm
			1000: 0.1 mm (100 μm)	
			10000: 1.0 mm	
			If there is a decimal point in the movement command,	
			the decimal point position will be handled as 1mm	
			regardless of this setting.	
1016	iout	Inch output	Specify whether the machine system (ball screw pitch,	0: Metric unit
(PR)		•	position detection unit) is an inch unit system or metric	system

#		Items	Details	Se	tting range (unit)
1017	rot	Rotational	Specify whether the axis is a rotary axis or linear axis.	0:	Linear axis
(PR)		axis	For the rotary axis, the position display will be 360	1:	Rotary axis
			degrees, and the axis will return to 0 degrees.		
			If the position display is to be continuously displayed		
			even with the rotary axis, set the axis as a linear axis		
1018	CCW	Motor CCW	Specify the direction of the motor rotation to the	0:	Rotates
(PR)			command direction.		clockwise
			0: Rotates clockwise (looking from motor shaft) with	1:	Rotates
			the forward rotation command.		counter-
			1: Rotates counterclockwise (looking from motor		clockwise
			shaft) with the forward rotation command.		
1019	dia	Diameter	Specify whether the program movement amount is to	0:	Command with
(PR)		specification	be commanded with the diameter dimension or as		movement
		axis	movement amount.		amount
			When the movement amount is commanded with the	1:	Command with
			diameter dimensions, 5mm will be moved when the		diameter
			command is a movement distance of 10mm.		dimension
			The movement amount per pulse will also be halved		
			during manual pulse feed.		
			Among parameters concerning length, the tool length,		
			the wear compensation amount and the workpiece		
			coordinate offset are displayed in diameter value when		
			diameter is specified, but other parameters are always		
			displayed in radius value.		
1020	sp_ax	Spindle	Specify 1 when the NC control axis is used as the	0:	The NC control
(PR)		Interpolation	spindle.		axis is used as
					the servo axis.
				1:	The NC control
					axis is used as
					the spindle.

base_l base_J	 Initial plane selection Base axis I Base axis J Base axis K 	Specify the plane to be selected when the power is turned on or reset. When 0 is specified, 1 is assumed (X-Y plane). Specify the basic axis address that composes the plane. Specify the axis address set in "#1013 axname".	 X-Y plane (G17 command state) Z-X plane (G18 command state) Y-Z plane (G19 command state) Control axis addresses such as
base_J	J Base axis J	plane.	
		Set the axis name even when there is no need to configure a plane, such as the case of 2-axis specifications. Normally, when X, Y and Z are specified respectively for base_I,_J,_K, the following relation will be established: G17: X-Y G18: Z-X G19: Y-Z Specify the desired address to set an axis address other than the above.	X, Y, and Z
aux_I	Flat axis I	If there is an axis parallel to "#1026 base_I", specify that axis address.	Control axis addresses such as X, Y, and Z
—		that axis address. If there is an axis parallel to "#1028 base_K", specify	Control axis addresses such as X, Y, and Z Control axis addresses such as
au	- L_xr	_	other than the above. Jx_I Flat axis I If there is an axis parallel to "#1026 base_I", specify that axis address. Jx_J Flat axis J If there is an axis parallel to "#1027 base_J", specify that axis address.

#		Items Details				Setting range (unit)
1037	cmdtyp	p Command type	Specify the type.	1 to 8		
			cmdtyp	G code series	Compensation type	
			1	System 1 (for M)	Type A (one compensation amount for one compen- sation number)	
			2	System 2 (for M)	Type B (shape and wear amounts for one compen- sation number)	
			3	System 2 (for L)	Type C (two kinds of compensation amount of shape and wear per compensation No.)	
			4	System 3 (for L)	Same as above	
			5	System 4 (for special L)	Same as above	
			6	System 5 (for special L)	Same as above	
			7	System 6 (for special L) System 7	Same as above	
			8	(for special L)		
			used or ca this param The file str compensa Thus, after	nnot be used acc eter. ucture may also tion data type.	e specifications that can be cording to the value set in change depending on the arameter, initialize the o".	
			# (1060) ↓	DATA (1) ()	INPUT	
			"BASE P	ARA SET? (Y/N))" : N INPUT	
			↓ FORMA	.T? (Y/N)" : Y	INPUT	
			↓ "SETUP	COMPLETE"		
			abo ma	ove operations. E	gram is cleared with the Back up necessary s in an external memory	
1038	plcsel	Ladder selection	Specify the	e PLC type.		0 to 2

#	Items		Details	Setting range (unit)
1039	spinno	Number of	Specify the existence of a spindle.	0 to 7
		spindles	0: No spindle 4: Four spindles	
			1: One spindle 5: Five spindles	
			2: Two spindles 6: Six spindles	
			3: Three spindles 7: Seven spindles	
1040	M_inch	Constant	Specify the parameter unit system for the position and	0: Metric system
(PR)		input (inch)	length.	1: Inch system
1041	l_inch	Initial state	Specify the unit system for the program movement	0: Metric system
(PR)		(inch)	amount when the power is turned on or reset and for	1: Inch system
			position display.	
1042	pcinch	PLC axis	Specify the unit system for the commands to the PLC	0: Metric system
(PR)		command	axis.	1: Inch system
		(inch)		
1043	lang	Select	Specify the display language.	0/1/21
		language	0 : Japanese display	
		displayed	1: English display	
			21: Polish display	
			(Note) If no character package is available for a	
			specified language, the screen is displayed in	
			English.	
1044	auxno	MR-J2-CT	Specify the number of MR-J2-CT axes connected.	0 to 7
(PR)		connections	As for C6/C64 system, up to 5 axes of MR-J2-CT can	
			be connected, thus, the setting range is 0 to 5.	

(Note) Selection of inch and metric unit

When set value of "#1041 I_inch" is changed, the unit of length is changed after reset. Among parameters concerning length, following items are not changed automatically, therefore change the set values to agree with the new unit system when the unit system is changed.

Tool compensation amount (Tool length compensation amount, tool wear compensation amount and tool tip compensation amount)									
Workpiece coordinate	Workpiece coordinate offset								
Machining parameter	#8004 SPEED	#8013 G83n	#8052 PULL UP						
	#8005 ZONE r	#8016 G71 MINIMUM	#8053 G73U						
	#8006 ZONE d	#8017 G71 DELTA-D	#8054 W						
	#8009 DSC. ZONE	#8018 G84/G74n	#8056 G74 RETRACT						
	#8010 ABS. MAX.	#8027 Toler-1	#8057 G76 LAST-D						
	#8011 INC. MAX.	#8028 Toler-2							
	#8012 G73n	#8051 G71 THICK							
Axis parameter	#8204 OT-CHECK-N								
	#8205 OT-CHECK-P								
	#8206 TOOL CHG.P								
	#8209 G60 Shift								
Barrier data	#8300 - #8306								
Basic specification parameter	#1084 RadErr								

#8004 SPEED is 10 inches/min. unit for the inch system.

to 1. 1: Updates (same coordinates as	#		Items	Details	Setting range (unit)
1: Execute one-touch setup # (1060) Data(1)() ************************************	1060	SETUP		Execute the functions required for initializing the	1
1: Execute one-touch setup # (1060) Data(_1)(_) "BASE PARA SET? (Y/N)" is displayed. To initialize the parameters. Y NPUT The parameters are initialized according to the seting values in #1001 to #1043. "FORMAT? (Y/N)" is displayed. To initialize the machining program file and tool offset file. Y NPUT To initialize the machining program file and tool offset file. Y NPUT To initialize the machining program file and tool offset file. Y NPUT To initialize the machining program file and tool offset file. Y NPUT N NPUT The above files are initialized and the standard canned cycle program is rout. "SETUP COMPLETE" is displayed. (Note) Most setup parameters will be initialized with one-touch setup, so confirm the data before executing. This parameter will automatically be set to 0 when the power is turned on. 0: Does not updat (shift coordinat burg automatic handle interrupt. (PR) Intabs Manual ABS Defines whether to update the absolute value data during automatic handle interrupt. This parameter is valid only when "#11451_abs" is set to 1. 0: Does not updat (stare) stand coordinates as coordinates as coordinat				system.	
# (1060) Data(1)() INPUT "BASE PARA. SET? (V/N)" is displayed. To initialize the parameters. To retain the current parameters. Imput Imput To parameters are initialized according to the setting values in #1001 to #1043. "FORMAT? (V/N)" is displayed. To initialize the machining program file and tool offset file. Imput Imput To initialize the machining program file and tool offset file. Imput Imput The above files are initialized and the standard canned cycle program is input. "SETUP COMPLETE" is displayed. (Note) Most setup, parameters will be initialized with one-touch setup, so confirm the data before executing. This parameter will automatically be set to 0 when the power is turned on. 1061 intabs (PR) Manual ABS Defines whether to update the absolute value data (shift coordinate by the amount of the interrupt). This parameter is valid only when "#1145 L_abs" is set to 1.			processing		
Image: Second				1: Execute one-touch setup	
Image: Second					
To initialize the parameters. To retain the current parameters. Imput Imput The parameters are initialized according to the setting values in #1001 to #1043. "FORMAT? (Y/N)" is displayed. To initialize the machining program file and tool offset file. Imput Imput The above files are initialized and the standard canned cycle program is input. "SETUP COMPLETE" is displayed. (Note) Most setup parameters will be initialized with one-touch setup, so confirm the data before executing. This parameter will automatically be set to 0 when the power is turned on. 1061 intabs Manual ABS Updating Defines whether to update the absolute value data during automatic handle interrupt. This parameter is valid only when "#1145 L_abs" is set to 1. 0. 10. 10.				# (1060) Data(1)() INPUT	
To initialize the parameters. To retain the current parameters. Imput Imput The parameters are initialized according to the setting values in #1001 to #1043. "FORMAT? (Y/N)" is displayed. To initialize the machining program file and tool offset file. Imput Imput The above files are initialized and the standard canned cycle program is input. "SETUP COMPLETE" is displayed. (Note) Most setup parameters will be initialized with one-touch setup, so confirm the data before executing. This parameter will automatically be set to 0 when the power is turned on. 1061 intabs Manual ABS Updating Defines whether to update the absolute value data during automatic handle interrupt. This parameter is valid only when "#1145 L_abs" is set to 1. 0. 10. 10.				★ *	
Y INPUT N INPUT The parameters are initialized according to the setting values in #1001 to #1043. FORMAT? (Y/N)" is displayed. To initialize the machining program file and tool offset file. To retain the current machining program file and tool offset file. Y INPUT N INPUT The above files are initialized and the standard canned cycle program is input. N INPUT SETUP COMPLETE" is displayed. N INPUT The above files are initialized and the standard canned cycle program is input. N INPUT The above files are initialized and the standard canned cycle program is input. N INPUT The above files are initialized and the standard canned cycle program is input. N INPUT SETUP COMPLETE" is displayed. N INPUT N Initiability of the initialized with one-touch setup, so confirm the data before executing. N Initiability of the amount of the power is turned on. 1061 Intabs Manual ABS Defines whether to update the absolute value data during automatic handle interrupt. O Does not updat (shift coordinate by the amount of the interruption the interruption it to 1. Updating Update (same coordinates as a coordinates as as a coordinates as as and and coordinates as a coordinates as a				"BASE PARA. SET? (Y/N)" is displayed.	
Y INPUT N INPUT The parameters are initialized according to the setting values in #1001 to #1043. FORMAT? (Y/N)" is displayed. To initialize the machining program file and tool offset file. To retain the current machining program file and tool offset file. Y INPUT N INPUT The above files are initialized and the standard canned cycle program is input. N INPUT SETUP COMPLETE" is displayed. N INPUT The above files are initialized and the standard canned cycle program is input. N INPUT The above files are initialized and the standard canned cycle program is input. N INPUT The above files are initialized and the standard canned cycle program is input. N INPUT The above files are initialized and the standard canned cycle program is input. N INPUT "SETUP COMPLETE" is displayed. N O Description of the prover is turned on. 1061 intabs Manual ABS Defines whether to update the absolute value data during automatic handle interrupt. O Does not updat (shift coordinate by the amount of the interruption the interruption of the interruption o					
The parameters are initialized according to the setting values in #1001 to #1043. "FORMAT? (Y/N)" is displayed. To initialize the machining program file and tool offset file. Image: the above files are initialized and the standard canned cycle program is input. "SETUP COMPLETE" is displayed. (Note) Most setup parameters will be initialized with one-touch setup, so confirm the data before executing. This parameter will automatically be set to 0 when the power is turned on. 1061 intabs Manual ABS updating Defines whether to update the absolute value data during automatic handle interrupt. 0: Does not update the interrupt. This parameter is valid only when "#1145 L_abs" is set to 1. 0: Does not update second to the interruption it updates (same coordinates as as a second by the amount to 1.				To initialize the parameters. To retain the current parameters.	
intabs Manual ABS 1061 intabs Manual ABS Updating Defines whether to update the absolute value data during automatic handle interrupt. This parameter is valid only when "#1145 L_abs" is set to 1. 0: Does not updat (shift coordinate sand) is the current mething to the interruption it update (same coordinates as as as a coordinates as as coordinates as c				Y INPUT N INPUT	
1061 Intabs Manual ABS Defines whether to update the absolute value data during automatic handle interrupt. 0: Does not updat to 1. 1061 Intabs Manual ABS Defines whether to update the absolute value data during automatic handle interrupt. 0: Does not updat to 1. 1061 Updating Updates is valid only when "#11451_abs" is set to 1. 0: Does not updat to 1.					
To initialize the machining program file and tool offset file. To retain the current machining program file and tool offset file. Y INPUT N The above files are initialized and the standard canned cycle program is input. N INPUT "SETUP COMPLETE" is displayed. INOT INPUT (Note) Most setup parameters will be initialized with one-touch setup, so confirm the data before executing. This parameter will automatically be set to 0 when the power is turned on. 1061 intabs Manual ABS updating Defines whether to update the absolute value data during automatic handle interrupt. 0: Does not update the interrupt. This parameter is valid only when "#1145 l_abs" is set to 1. 1: Updates (same coordinates as coo				setting values in #1001 to #1043.	
To initialize the machining program file and tool offset file. To retain the current machining program file and tool offset file. Y INPUT N The above files are initialized and the standard canned cycle program is input. N INPUT "SETUP COMPLETE" is displayed. INOT INPUT (Note) Most setup parameters will be initialized with one-touch setup, so confirm the data before executing. This parameter will automatically be set to 0 when the power is turned on. 1061 intabs Manual ABS updating Defines whether to update the absolute value data during automatic handle interrupt. 0: Does not update the interrupt. This parameter is valid only when "#1145 l_abs" is set to 1. 1: Updates (same coordinates as coo					
and tool offset file. and tool offset file. Y INPUT INPUT N The above files are initialized and the standard canned cycle program is input. "SETUP COMPLETE" is displayed. (Note) Most setup parameters will be initialized with one-touch setup, so confirm the data before executing. This parameter will automatically be set to 0 when the power is turned on. 1061 intabs Manual ABS Defines whether to update the absolute value data during automatic handle interrupt. This parameter is valid only when "#1145 I_abs" is set to 1. 0: Does not update the interrupt. 1: Updating				"FORMAT? (Y/N)" is displayed.	
and tool offset file. and tool offset file. Y INPUT INPUT N The above files are initialized and the standard canned cycle program is input. "SETUP COMPLETE" is displayed. (Note) Most setup parameters will be initialized with one-touch setup, so confirm the data before executing. This parameter will automatically be set to 0 when the power is turned on. 1061 intabs Manual ABS Defines whether to update the absolute value data during automatic handle interrupt. This parameter is valid only when "#1145 I_abs" is set to 1. 0: Does not update the interrupt. 1: Updating					
Image: Provide and the standard canned cycle program is input. The above files are initialized and the standard canned cycle program is input. "SETUP COMPLETE" is displayed. (Note) Most setup parameters will be initialized with one-touch setup, so confirm the data before executing. This parameter will automatically be set to 0 when the power is turned on. 1061 intabs Manual ABS (PR) Defines whether to update the absolute value data during automatic handle interrupt. This parameter is valid only when "#1145 l_abs" is set to 1. 0: Does not update the interrupt. 1061 intabs Manual ABS updating 01. 0: Defines whether to update the absolute value data during automatic handle interrupt. 0: Does not update the interrupt. 1061 intabs updating Defines whether to update the absolute value data during automatic handle interrupt. 0: Does not update the interrupt. 1. Updating 0: 1. Defines (ame coordinates as the interrupt).					
1061 intabs Manual ABS Defines whether to update the absolute value data during automatic handle interrupt. 0: Does not updating 1061 intabs Manual ABS Defines whether to update the absolute value data during automatic handle interrupt. 0: Does not updating 1061 intabs Manual ABS Defines whether to update the absolute value data during automatic handle interrupt. 0: Does not update the interrupt. 1061 intabs Manual ABS Defines whether to update the absolute value data during automatic handle interrupt. 0: Does not update the interrupt. 1061 intabs Manual ABS Defines whether to update the absolute value data during automatic handle interrupt. 0: Does not update the interrupt. 1051 intabs Updating 0: Does not update the interrupt. 0: Does not update the interrupt. 1: Updates (same coordinates as 0: 0: Does not update the interrupt. 1: Updates (same coordinates as 0: Updates (same coordinates as				and tool offset file. and tool offset file.	
Image: canned cycle program is input. Image: canned cycle program is input. Image: canned cycle program is input. "SETUP COMPLETE" is displayed. (Note) Most setup parameters will be initialized with one-touch setup, so confirm the data before executing. This parameter will automatically be set to 0 when the power is turned on. Image: canned cycle program is input. 1061 intabs Manual ABS updating Defines whether to update the absolute value data during automatic handle interrupt. This parameter is valid only when "#1145 I_abs" is set to 1. 0: Does not update the interrupt. This parameter is valid only when "#1145 I_abs" is set to 1.				Y INPUT N INPUT	
Image: Note of the initial is a set of the initial is provided in the i					
(Note)Most setup parameters will be initialized with one-touch setup, so confirm the data before executing. This parameter will automatically be set to 0 when the 				canned cycle program is input.	
Image: Note initial is a set of the initial is ini					
Image: 1061 one-touch setup, so confirm the data before executing. This parameter will automatically be set to 0 when the power is turned on.Image: 1061 one-touch setup, so confirm the data before executing. This parameter will automatically be set to 0 when the power is turned on.1061 intabs (PR)Manual ABS updatingDefines whether to update the absolute value data during automatic handle interrupt. This parameter is valid only when "#1145 l_abs" is set to 1.0:Does not updat (shift coordinate by the amount of the interruption) 1:				"SETUP COMPLETE" is displayed.	
Image:					
Image:					
executing. This parameter will automatically be set to 0 when the power is turned on.0:Does not updat (PR)1061 (PR)Manual ABS updatingDefines whether to update the absolute value data during automatic handle interrupt. This parameter is valid only when "#1145 I_abs" is set to 1.0:Does not updat (shift coordinate by the amount of the interruption) 1:				(Note) Most setup parameters will be initialized with	
1061 intabs Manual ABS Defines whether to update the absolute value data 0: Does not update (PR) updating Defines whether is valid only when "#1145 I_abs" is set to 1. 0: Does not update 1061 intabs Manual ABS Defines whether to update the absolute value data 0: Does not update (PR) updating Defines whether is valid only when "#1145 I_abs" is set to 1. 0: Does not update 1: Updates (same coordinates as 0: 0: 0: 1: Updates (same coordinates as 0: 0:				one-touch setup, so confirm the data before	
1061 intabs Manual ABS Defines whether to update the absolute value data 0: Does not update (PR) updating Defines whether to update the absolute value data 0: Does not update This parameter is valid only when "#1145 l_abs" is set 0: Does not update to 1. Updates (same coordinates as				5	
1061intabsManual ABSDefines whether to update the absolute value data during automatic handle interrupt. This parameter is valid only when "#1145 I_abs" is set to 1.0:Does not update (shift coordinate by the amount of the interruption)1061intabsManual ABS during automatic handle interrupt. This parameter is valid only when "#1145 I_abs" is set to 1.0:Does not update (shift coordinate by the amount of the interruption)					
(PR)updatingduring automatic handle interrupt. This parameter is valid only when "#1145 I_abs" is set to 1.(shift coordinate by the amount of the interruption)1:Updates (same coordinates as				-	
This parameter is valid only when "#1145 I_abs" is set to 1. 1: Updates (same coordinates as		intabs			
to 1. 1: Updates (same coordinates as	(PR)		updating		by the amount of
1: Updates (same coordinates as					the interruption)
					1: Updates (same
when interrunt (
					when interrupt did not occur will be
applied.)					

#		Items		Details		Se	tting range (unit)
1062	T_cmp	Tool offset	Specify wheth	er the tool length of	fset and wear	0 t	o 3
		function	compensation	is valid during T co	mmand execution.		
			Setting value	Tool length offset	Wear compensation		
			0	Valid Valid	Valid Invalid		
			2	Invalid	Valid		
			3	Invalid	Invalid		
1063	mandog			rn to the reference		0:	High speed
		dog-type	• • • •	•	ver is turned on, and		return
				system is establish		1:	Dog-type
				anual reference poi			
				linate system is est	adiished with this		
			parameter.		uning choolute		
				s not required when	using absolute		
1064	svof	Error	position detect	,	or when the servo is	0.	Does not
(PR)	3001	correction	off.			0.	correct the error
(FIX)		conection	01.			1:	
						1.	error
1065	JOG_H	106	Set un an imp	roved JOG respons	e type	0.t	o 4
1005	1000_11	response		ional specification	se type.	01	0 4
		type		em is started and s	topped by signals		
		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-	er without reference			
			signals.				
			1: Type 1				
				em is started up an	d stopped by		
			external	-			
			2: Type 2	-			
			The syst	em is started up an	d stopped by		
			performi	ng the AND operati	on for external		
			signals a	and signals via ladd	er.		
			3: Type 3				
			The syst	em is started up wh	nen signals via		
			ladder ris	se. It is stopped whether the stopped whether	nen external signals		
			and sign	als via ladder fall.			
			4: Type 4				
				nce point return mo			
				system is started u			
			-	als via ladder witho			
				ernal input signals (conventional		
				cification).			
				ference point return			
				system is started u			
				orming AND for ext	•		
			sign	als via ladder (type	Z).		

#	I	tems	Details	Setting range (unit)
1066		Select JOG activation (+) device	Specify the number of the device that inputs +JOG activation signals. The device type is specified by "#1071 JOG_D". The effective range of set values vary depending on the device type. A value outside of the effective range is invalid if specified. (Note) The setting range of this parameter has been expanded on the software Ver.D0 and later.	X: 0000 to 03FF (hexadecimal) M: 0000 to 8191 (decimal)
1067	JOG_HN	Select JOG activation (-) device	 Specify the number of the device that inputs -JOG activation signals. The device type is specified by "#1071 JOG_D". The effective range of set values vary depending on the device type. A value outside of the effective range is invalid if specified. (Note) The setting range of this parameter has been expanded on the software Ver.D0 and later. 	X: 0000 to 03FF (hexadecimal) M: 0000 to 8191 (decimal)
1068 (PR)	slavno	Slave axis number	Specify the axis number of a slave axis to be synchronized. The axis number is an NC number excluding the spindle and PLC axis. Two or more slave axes cannot be set up for one master axis. This parameter "slavno" cannot be set up for a slave axis. A multiple part system cannot be set up so that the relation between the master and slave axes extends over a part system.	0: No slave axis 1 to 6: First to sixth axes
1069 (PR)	no_dsp	Axis with no counter display	Set up an axis that displays no counter. This option is valid on the counter display screen (e.g. POSITION screen).	 Displays the counter Does not display the counter.
1070	axoff	Axis removal	Define an axis that enables axis removal control.	 Disables axis removal. Enables axis removal
1071 (PR)	JOG_D	±JOG activation signal device name	Specify the number of the device that inputs ±JOG activation signals. 0 : X device 1 or 2: M device Set the JOG_HP (#1066) and JOG_HN (#1067) parameters according to this device specification parameter. (Note) The setting range of #1066 and #1067 parameters has been expanded on the software Ver.D0 and later.	0 to 2

#	I	tems	Details	Setting range (unit)		
1073	I_Absm	Initial absolute value	Specify the absolute value/incremental value mode for when the power is turned on or reset.	0:	Incremental value command mode Absolute value command mode	
1074	I_Sync	Initial synchronous feed	 Specify the feedrate specification mode for when the power is turned on or reset. 0: Asynchronous feed (feed per minute) 1: Synchronous feed (feed per rotation) 	0: 1:	Asynchronous feed Synchronous feed	
1075	I_G00	Initial G00	Specify the linear command mode for when the power is turned on or reset. 0: Linear interpolation (G01 command state) 1: Positioning (G00 command state)	0: 1:	Linear interpolation Positioning	
1076	AbsInc (For L system only)	ABS/INC address	 The absolute value/incremental commands can be issued by using the absolute value address and incremental value address for the same axis. 0: Absolute/incremental with G command 1: Absolute/incremental with address code (The "#1013 axname" address will be the absolute value command, and "#1014 incax" address will be the incremental value command) 		Absolute/ incremental with G command Absolute/ incremental with address code	
1077	radius	Incremental command for diameter specification axis	Specify if the diameter specification axis' ("#1019 dia" is set to 1) incremental value command uses the diameter value or radius value	0: 1:	Diameter value Radius value	
1078	Decpt2	Decimal point type 2	 Specify the unit of position commands that do not have a decimal point. 0: The min. input command unit is used (follows "#1015 cunit") 1: 1mm (or 1inch) unit is used 	0: 1:	The min. input command unit is used 1mm (or 1inch) unit is used	
1079	F1digt	Validate F1 digit	 Specify whether to execute the F command with a 1-digit code command or with a direct numerical command. 0: Direct numerical command (command feedrate during feed per minute or rotation) 1: 1-digit code command (feedrate specified with "#1185 spd_F1" to "#1189 F5") 	0: 1:	Direct numerical command 1-digit code command	

#		ltems	Details	Setting range (unit)
1080		Specify boring axis	Specify a fixed-cycle boring axis. 0: Uses an axis perpendicular to the selected plane	0/1
	system	During axis	as the boring axis.	
	only)		1: Uses the Z axis as the boring axis regardless of	
	Only)		the selected plane.	
1081	Gmac P	Give priority	Specify the G code priority relationship during the	0/1
1001	•	to G code	macro call with the G command.	0/1
		parameter	0: G code used in system is priority	
		P	1: Registered G code for call out is priority	
1082	Geomet	Geometric	Specify the validity of the geometric function.	0: Invalid
	(For L		As the designated address code is used exclusively for	1: Valid
	system		geometric, if "A" or "C" is used for the axis address or	
	only)		2nd miscellaneous command code, "A" that is the axis	
			address may be handled as the geometric's angle	
			specification. Take special care to the setting of the	
			axis name, etc., when using this function.	
1084	RadErr	Arc error	Specify the tolerable error range when a deviation	0 to 1.000 (mm)
			occurs in the end point and center coordinate in the	
			circular command.	
1085	G00Drn	G00 dry run	Specify whether to apply dry run (feed with manual	0/1
			setting speed instead of command feedrate) to the G00	
			command.	
			0: Does not apply to G00 (moves at rapid traverse	
			feedrate)	
			1: Applies to G00 (moves at manual set feedrate)	- //
1086	G0Intp	G00 non-	Specify the G00 movement path type	0/1
		interpolation	0: Moves linearly toward the end point (interpolation	
			type)	
			 Moves to the end point of each axis at the rapid traverse feedrate for each axis 	
1087	G96 G0	Constant	(non-interpolation) Specify how to handle the cycle speed for the G00	0/1
1007	330_60	surface	command when using the constant surface speed	0/1
		speed	control function.	
		control by	0: Calculates the cycle speed constantly even	
		rapid	during G00 movement.	
		traverse	1: Calculates the cycle speed at the block end point	
		feed	in the G00 command.	
		command		

#	I	tems	Details	Setting range (unit)
1088	G30SL	Disable G30	Specify how to handle the soft limit during G30 (2nd	0/1
		soft limit	reference point return) movement.	
			0: Soft limit valid during G30 movement	
			1: Soft limit invalid during G30 movement	
1089	Cut_RT	Short cut for	Specify how to handle the short cut control for the	0: No short cut
		rotary axis	rotary axis ("#1017 rot" is set to 1).	1: Use short cut
			0: No short cut (move toward end point)	
			1: Uses short cut (when using the absolute value	
			command, move in the direction where the	
			movement amount will be 180 degrees or less)	
1090	Lin_RT	Linear	Specify how to handle a command for the rotary axis	0/1
		rotary axis	that exceeds 360 degrees.	
			0: For absolute value commands that exceed 360	
			degrees, the value will be converted into a	
			remainder of 360 degrees and the axis will move.	
			Example: If the command is 420 degrees, the	
			applied value will be 60 degrees.	
			1: For absolute value commands that exceed 360	
			degrees, the axis will move in the same manner	
			as a linear axis.	
			Example: If the command is 420 degrees, the axis	
			will pass the 360 degree position and	
			will move to the 60 degree position.	
1091	Mpoint	Ignore	Specify now to handle the middle point during G28 and	0/1
		middle point	G30 reference point return.	
			0: Moves to the reference point after passing the	
			middle point designated in the program.	
			1: Ignores the middle point designated in the	
			program and move straight to the reference point.	
1092	Tchg _A	Replace	Specify the movement of the additional axis during tool	0/1
		tools for	change position return.	
		additional	0: The additional axis does not move with the tool	
		axis	change position return command.	
			1: After returning the standard axis with the tool	
			change position return command, the additional	
1000			axis also returns to the tool change position.	0//
1093	Wmvfin	U U	Specify the method for waiting between part systems.	0/1
		method	When the movement command is found in the wait	
		between	command ! block:	
		part systems	0: Waits before executing movement command	
1001			1: Waits after executing movement command	2/4
1094		Select life	Select whether to count the data units to be used for a	0/1
	(for L	count for	single block when using the tool life management II	
	system	single block	function (lathe system).	
	only)		0: Does not count the data units.	
			1: Count the data units.	

#		Items	Details	Setting range (unit)
1095	T0tfof	TF output	Select how to handle TF for T00 command. 0: TF is output. 1: TF is not output	0/1
1096	T_Ltyp (For L system only)	Tool life management type	Specify the tool life management type.	 Life manage- ment type I Life manage- ment type II
1097	T1digt	Tool wear compen- sation number 1-digit command	 Specify the No. of digits in the tool wear compensation No. in the T command. 0: The 2 high-order digits are the tool No., and the 2 low-order digits are the wear compensation No. 1: The 3 high-order digits are the tool No., and the 1 low-order digit is the wear compensation No. This parameter will be fixed to 0 when tool life management II is selected. 	0/1
1098	Tlno.	Tool length offset number	 Specify the No. of digits in the tool length offset No. in the T command. 0: The 2 or 3 high-order digits are the tool No. The 2 or 1 low-order digits are the tool length offset and wear compensation Nos. 1: The 2 or 3 high-order digits are the tool No. and tool length offset Nos. The 2 or 1 low-order digits are the wear compensation No. 	0/1
1099	Treset	Cancel tool wear compen- sation amount	 Specify how to handle tool compensation vector when resetting system. 0: Clears the tool length and wear compensation vectors when resetting. 1: Saves the tool length and wear compensation vectors when resetting. When the values are cleared, the compensation will not be applied, so the axis will move the compensation amount in the next compensation operation. When the values are saved, the compensation will be applied, so the axis will shift the differential amount of the compensation amount in the next in the next compensation operation. 	0: Clears 1: Saves

#		Items	Details	Setting range (unit)
# 1100		Items Tool wear compen- sation	 Specify the period to perform tool length offset and wear compensation. 0: Compensate when T command is executed. 1: Superimpose and compensate with the movement command in the block where the T command is located. If there is no movement command in the same block, compensation will be executed after the movement command is superimposed in the next movement command block. 2: Compensate when the T command is executed. 1: Superimpose and compensate a tool length offset with the movement command in the same block. If there is no movement in the same block. 	0 to 2	unit)
1101	Tabsmv	Tool wear compen- sation method	 same block, compensation will be executed after the movement command is superimposed in the next movement command block. Specify the type of movement command when "#1100 Tmove" is set to 1. 0: Compensate regardless of the movement command type. 1: Compensate only at the movement command in the absolute value command. 		of nd :e e
1102	tlm (For L system only) T_life	Manual tool length measuring system Validate life management	Specify the measurement method for manual tool measurement I. 0: Align tool with basic position 1: Input measurement results Select the usage of the tool life management function.	 command. 0: Basic positi method 1: Measured value input method 0: Do not use. 1: Perform too menagement 	ol life
1104	T_Com2	Tool command method 2	 Select the command method for when "#1103 T_Life" is set to 1. 0: Handle the program tool command as the group No. 1: Handle the program tool command as the tool No. 	manageme control.	nt

#		Items	Details	Setting range (unit)
1105		Tool selection method 2	 Select the tool selection method for when "#1103 T_Life" is set to 1. 0: Select in order of registered No. from the tools used in the same group. 1: Select the tool with the longest remaining life from tools used in the same group and the unused tools. 	0/1
1106	Tcount (For L system only)	Life manage- ment count	Specify the function when address N is omitted when inputting data (G10 L3 command) for tool life management function II.	0: Time specified input1: No. of times specified input
1107	Tllfsc (For L system only)	Split life management display screen	 Set up the number of groups to be displayed on the tool life management II (lathe system) screen. 0: Displayed group count 1 1: Displayed group count 2 2: Displayed group count 4 	0 to 2
1108	(For L	Life manage- ment re-count M code	Set up the M code for tool life management II (lathe system) re-count.	0 to 99
1109 (PR)	subs_ M	Validate alternate M code	Select the user macro interrupt with the substitute M code.	 O: Alternate M code invalid 1: Alternate M code valid
1110	M96_M	M96 alternate M code	Specify an M code to replace M96 when "#1109 subs_M" is set to 1.	3 to 97 (excluding 30)
1111	M97_M	M97 alternate M code	Specify an M code to replace M97 when "#1109 subs_M" is set to 1.	
(PR)	S_TRG	status trigger system	Specify the validity conditions for the user macro interrupt signal. 0: Valid when interrupt signal (UIT) turns off to on. 1: Valid when interrupt signal (UIT) is ON.	 0: Valid when interrupt signal (UIT) turns off to on. 1: Valid when interrupt signal (UIT) is ON.
1113 (PR)	INT_2	Validate interrupt method type 2	 Specify the movement after user macro interrupt signal (UIT) input. 0: Execute interrupt program without waiting for block being executed to end. 1: Execute interrupt program after completing block being executed. 	0/1

#	Items		Details	Setting range (unit)
1114	mcrint	Macro argument initialization	 Select whether to clear statements other than specified arguments by macro call. Also, select whether to clear local variables by power-on and resetting. 0: Delete non-specified arguments by macro call. 1: Retain non-specified arguments by macro call. 2: Retain non-specified arguments by macro call and clear local variables by power-on and resetting. 	0/1/2
1115	thwait	Waiting for thread cutting	Set the queue number during screw thread cutting when the chamfering is not valid.	0 to 99 (Approx. 4 ms.) Standard set value: 4
1116	G30SLM	Invalidate soft limit (manual operation)	Enable this function when disabling the soft limit check function from the second to the fourth reference point return by manual operation.	 Enable soft limit function. Disable soft limit function.
1117	H_sens	Handle response switch	Switch the handle response mode when feeding the handle. 0: Standard handle response 1: High-speed handle response	0/1
1118	mirr_A (For L system only)	Select how to set up the length of tools on facing turret (double-turret mirror image)	 Select one of the following two methods. 0: Set up the current length of tools on facing turret. 1: Set up a value, assuming that the tools on facing turret is in the same direction as that of those on the base turret. 	0/1
1119	Tmiron (For L system only)	Select the double-turret mirror image with T command	Select whether to validate the double-turret mirror image with the T command.	0: Invalid 1: Valid
1120 (PR)	TofVal	Change macro variable	 Specify whether to change the macro variable (tool offset) numbers for shape compensation and wear compensation. 0: Do not change. (Conventional specifications) 1: Change the shape and wear compensation variable numbers each for X, Z, and R. 	0/1

#		ltems	Details	Setting range (unit)
1121	edlk_c	Edit lock C	Specify whether to prohibit editing of program Nos. 9000 to 9999.	0: Editing possible 1: Editing prohibited
1122 (PR)	pglk_c	Program display lock	 The display and search of program Nos. 9000 to 9999 can be prohibited. Specify whether to prohibit display and search. 0: Display and search is possible 1: Program details are not displayed 2: Program details are not displayed, and operation search is prohibited. The program details will not be displayed, but the program No. and sequence No. will display in the prohibited state. 	0 to 2
1123	origin	Origin zero inhibition	Select whether to use the origin zero function.	0: Use 1: Do not use
1124	ofsfix	Fix tool wear compen- sation number	 Specify whether to automatically increment the offset No. by 1 with the input or to display the No. as it is in the setting on the tool offset screen. 0: Increment the # No. by 1 when the input key is pressed. (Same as general parameters) 1: # No. does not change even if input key is pressed. When making settings in sequence, 0 is handier. When changing and setting repeatedly while adjusting one offset value, 1 is handier 	0/1
1125	real_f	Actual feedrate display	Specify the feedrate display on the monitor screen.	0: Command speed1: Real move- ment feedrate
1126	PB_G90		Not used.	0
1127	DPRINT	DPRINT alignment	 Specify the alignment for printing out with the DPRINT function. 0: No alignment, data is printed with left justification. 1: Align the minimum digit and output. 	0/1

#		Items	Details	Setting range (unit)
1128	RstVCI	Clear variables by resetting	 Specify how to handle the common variables when resetting. 0: Common variables do not change after resetting. 1: The following common variables are cleared by resetting: During variable 100 sets specifications: 	0/1
			#100 to #149 are cleared. During variable 200 or 300 sets specifications: #100 to #199 are cleared.	
1129	PwrVCI	Clear variables by power-on	 Specify how to handle the common variables when the power is turned on. 0: The common variables are in the same state as before turning the power off. 1: The following common variables are cleared when the power is turned on. During variable 100 sets specifications: #100 to #149 are cleared. During variable 200 or 300 sets specifications: #100 to #199 are cleared. 	0/1
1130	set_t	Display selected tool number	 Specify the tool command value display on the POSITION screen. 0: T-modal value of program command is displayed. 1: Tool number sent from PLC is displayed. 	0/1
1131 (PR)		Feed forward filter	Parameter to suppress acceleration changes with a filter when starting acceleration or deceleration. Specify the parameter in bits.	bit1: 7.1 (ms) bit2: 14.2 (ms) bit3: 28.4 (ms) bit4: 56.8 (ms) If bit 1 to bit 4 are all 0 or two or more bits of bit 1 to bit 4 are 1, 3.5 ms is set up.
1132	CRT	CRT brightness control	This parameter adjusts the brightness of the CRT display unit. 3:Highest luminance (Brightest state) -3:Lowest luminance (Darkest state) Adjust this parameter to an appropriate brightness between -3 and 3. The EL display unit does not have brightness adjustment, so setting is not required.	-3 to 3

#		ltems	Details	Setting range (unit)
1133	ofsmem	Select how to set up tool wear compensa- tion screen	 Select the number stored by previous setup when selecting the tool wear compensation screen. 0: Does not display the number when selecting the screen. 1: Displays the stored number when selecting the screen. 	0/1
		LCD reverse display	Specify 1 to reverse the display on the 10.4-type monochrome LCD.	0: Normal display1: Reverse display
1135	unt_nm	Unit name	Set up a unit name. Set up the unit name with 4 or less characters consisting of both alphabets and numbers. If 0 is set up, the unit name is not displayed.	4 or less characters consisting of both alphabets and numbers
1138	Pnosel		Not used.	0
1139		Edit type selection	 Set up an edit type. 0: Screen edit type (M50 or equivalent operation) 1: Screen edit type (The screen of EDIT or MDI is changed automatically according to the selected operation mode.) 2: Word edit type (The screen of EDIT or MDI is changed automatically according to the selected operation mode.) 	0/1/2
1140	Mn100	M code number	First number of M code that corresponds to setup number from 100 to 199.	0 to 99999999
1141	Mn200	M code number	First number of M code that corresponds to setup number from 200 to 299.	0 to 99999999
1142	Mn300	M code number	First number of M code that corresponds to setup number from 300 to 399.	0 to 99999999
1143	Mn400	M code number	First number of M code that corresponds to setup number from 400 to 499.	0 to 99999999
1144	mdlkof	MDI setup lock	Select whether to enable MDI setup in non-MDI mode.	0: Disable MDI setup 1: Enable MDI setup

#		Items	Details	Setting range (unit)
1145	I_abs	Manual ABS parameter	 Specify how to handle the absolute position data during automatic handle interrupt. 0: Absolute position data is renewed if manual ABS switch is on. Data is not renewed if switch is off. 1: Follows the intabs state when "#1061 intabs" is valid. 	0/1
1146	Sclamp	Spindle rotation clamp function	 Specify how to handle the spindle rotation clamp function with the G92S command. 0: G92S command is handled as a clamp command only in the G96 state (during constant surface speed control). G92S will be handled as normal S command in G97 state (constant surface speed OFF). 1: The S command in the same block as G92 is constantly handled as a clamp command. 	0/1
1147	smin_V	Minimum spindle rotation speed clamp type	Specify the type of spindle min. rotation speed clamp value. 0: Rotation speed setting 1: Output voltage coefficient setting Set the "#3023 smini" parameter according to this type setting.	0: Rotation speed setting1: Output voltage coefficient setting
1148	I_G611	Initial high precision	Specify the default mode after power-on or resetting.0: G64 (cutting mode)1: G61.1 (high precision control mode)	0/1
1149	cireft	Arc decelera- tion speed change	Specify whether to enable deceleration at the arc entrance or exit. 0: Disable 1: Enable	0/1
1150	F1dc0	G00 feed forward filter	This parameter is used to filter acceleration changes at the start of rapid acceleration/deceleration. Specify the filters in bit units. 7 6 5 4 3 2 1 0 G00 feed forward filter Feed forward filter G00 and G01 independent 0: Common 1: Independent	bit1: 7.1 (ms) bit2: 14.2 (ms) bit3: 28.4 (ms) bit4: 56.8 (ms) If bit 1 to bit 4 are all 0 or two or more bits of bit 1 to bit 4 are 1, 3.5 ms is set up.
1151	rstint	Reset initial	Specify whether to initialize various modals by resetting. 0: Does not initialize. 1: Initializes.	0/1

#		Items	Details	Setting range (unit)
1152	I_G20	Initial	Specify whether the default mode after power-on or	0/1
		command	resetting, inch command or metric command mode.	
		unit	0: Metric command (G21 command state)	
			1: Inch command (G20 command state)	
			Valid when reset input is made.	
			Related parameter: Bit 6 "Select setting and display	
			unit" of #1226	
1154	pdoor	Door	Specify whether to control door interlock II	0/1
(PR)		interlock II	independently for each of the two part systems.	
		(for each part	When door interlock II is controlled for each part	
		system)	system of the two part systems, part system 1 is	
			connected to SERVO1 of the base I/O unit and part	
			system 2 is connected to SERVO2 of the base I/O unit.	
			C6/C64 unit	
			SERVO1 AMP AMP AMP Part system 1	
			SERVO2 AMP AMP AMP Part system 2	
			When the auxiliary axis (MR-J2-CT) is used, connect it to the SERVO2 side (after the spindle). This validates door interlock II of part system 2.	
			0: Do not use door interlock II independently for each part system.	
			 Use door interlock II independently for each part system. 	
			When 0 is specified for this parameter, "Signal input	
			device 1 for door interlock II (#1155 DOOR_m)" and	
			"Device number 2 for door interlock II signal input	
			(#1156 DOOR_s) are valid. When 1 is specified,	
			"Signal input device 1 for door interlock II: for each part	
			system (#1511 DOORPm)" and "Signal input device 2	
			for door interlock II: for each part system (#1512 DOORPs)."	

#	l	Items	Details	Setting range (unit)
1155	DOOR_m	Signal input	Set up a fixed device number (X??) for door interlock II	000 to 3FF
		device 1 for	signal input.	(hexadecimal)
		door interlock	A device number from X001 to X3FF can be set up.	
		II	Device number 000 is invalid. Set up device number	
			100 when using no fixed device number for door	
			interlock II signal input.	
			(Note) The setting range of this parameter has been	
			expanded on the software Ver.D0 and later.	
			Related parameter: "#1154 pdoor" Door interlock II	
			(for each part system)	
1156	DOOR_s	Device	Set up a fixed device number (X??) for door interlock II	000 to 3FF
		number 2 for	signal input. (Set up the same value as that of #1155.)	(hexadecimal)
		door interlock	(Note) The setting range of this parameter has been	
		II signal input	expanded on the software Ver.D0 and later.	
			Related parameter: "#1154 pdoor" Door interlock II	
			(for each part system)	
1157	F0atrn	F0 automatic	Not used.	
		running		
1158	F0atno	F0 automatic	Not used.	
		running		
		program		
1166	fixpro	Fixed cycle	Select whether to use the edit, program list, and data	0/1
		editing	input/output functions for the fixed cycle or general	
			program.	
			0: Editing, etc., of general program will be possible.	
			1: Editing, etc., of fixed cycle will be possible.	
1167	e2rom		Not used.	
1168	test	Simulation	Specify the test mode for the control unit.	0: Normal
		test	The test mode does not use reference point return, and	operation mode
			tests with a hypothetical reference point return	1: Test mode
			completed state. This is limited to test operation of the	
			control unit itself, and must not be used when	
			connected to the machine.	

#		ltems	Details						Setting range (unit)
1169	system	Part system	Set the na	ame of ea	ach part s	system.			A max. of four
	name	name	This must	be set w	vhen usin	g the mu	ltiple par	t system.	alphabetic
			This name	e is displa	ayed on t	he scree	n only wł	nen the	characters or
			part syste	ms must	be ident	ified.			numerals.
			Use a ma	x. of four	alphabe	tic chara	cters or n	umerals.	
1170	M2name	Second	Set this a	ddress co	ode wher	n using th	e 2nd mi	scellane-	A, B, C
		miscellane-	ous comn	nand. Se	t an addr	ess with	A, B and	C that is	
		ous code	not used	with "#10	13 axnar	me" or "#	1014 inca	ax".	
1171	taprov	Tap retract	Set the ta	p retract	override	value for	the sync	hronous	1 to 100 (%)
		override	tap.						
1172	tapovr	Tap retract	Set the ov	verride va	lue wher	leaving	the tap er	nd point in	1 to 999 (%)
	-	override	the synch	ronous ta	ap cycle.	-	-	-	
			The settir	ig range	is 1 to 99	9, and th	e unit is 9	%.	
			When a v	alue less	than 100) is set, it	will be ju	idged as	
			100%.				-	-	
1173	dwlskp	G04 skip	Specify th	e skip si	gnal for e	ending the	e G04 (dv	well)	0 to 15
	-	condition	command	I.	-	-			
					Skip s	ignals		1	
			Setting	SKIP3	SKIP2	SKIP1	SKIP0		
			0	×	×	×	×		
			1	×	×	×	0		
			2	×	×	0	×		
			3	×	×	0	0		
			4	×	0	×	×		
			5	×	0	×	0		
			6	×	0	0	×		
			7	×	0	0	0		
			9	0	×	× ×	×		
			10	0	×	Ô	×		
			11	0	×	0	0	1	
			12	0	0	×	×	1	
			13	0	0	×	0]	
			14	0	0	0	×	ļ	
			15	0	0	0	0	ļ	
			Skip whe	n O signa	al is input	i.			
1174	skip_F	G31 skip	Specify th	2			o F comr	nand in	1 to 999999
	. –	speed	the progra						(mm/min)

#		Items				Setting range (unit)			
			Specify th	e skip sig	gnal in the	e G31.1 to	o G31.3 (multi-step	Skip condition:
			skip) com	mand, an	d the fee	drate whe	en there i	s no F	0 to 15
			command	in the pr	ogram.				
				-		ignals]	Skip federate:
			Setting	SKIP3	SKIP2	SKIP1	SKIP0		1 to 999999
			0	×	×	×	×		(mm/min)
			1	×	×	×	0		, , , , , , , , , , , , , , , , , , ,
			2	×	×	0	×		
			3	×	×	0	0		
			4	×	0	×	×		
			5	×	0	×	0		
			6	×	0	0	×		
			7	×	0	0	0		
			8	0	×	×	×		
			9	0	×	×	0		
			10	0	×	0	×		
			11	0	×	0	0	-	
			12	0	0	×	×	-	
			13	0	0	×	0		
			14	0	0	0	×		
			15	0	0	0	0		
			Skip wher	n O signa	al is input				
1175	skip1	G31.1 skip condition	Skip signa	al specifie	ed at G31	1.1			
1176	1f	G31.1 skip speed	Skip feed	rate at G	31.1				
1177	2	G31.2 skip condition	Skip signa	al specifie	ed at G31	1.2			
1178	2f	G31.2 skip speed	Skip feed	rate at G	31.2				
1179	3	G31.3 skip condition	Skip signa	al specifie	ed at G31	1.3			
1180	3f	G31.3 skip speed	Skip feed	rate at G	31.3				

#		Items	Details	Setting range (unit)
1181		Constant surface speed control	 Specify the axis to be targeted for constant surface speed control. 0: Program specification will be invalidated, and the axis will always be fixed to the 1st axis. 1: 1st axis specification 2: 2nd axis specification 3: 3rd axis specification 4: 4th axis specification The program specification will be the priority for all settings other than 0. 	0 to 4
1182	thr_F	Thread cutting speed	Set the screw cut up speed when not using chamfering in the thread cutting cycle. 0: Cutting feed clamp feedrate 1 to 60000 mm/min: Set feedrate	0 to 60000 (mm/min)
1183	clmp_M	M code for clamp	Set the M code for C-axis clamp in the hole opening cycle.	0 to 99999999
1184	clmp_D	Dwelling time after output- ting M code for unclamp	Set the dwell time after outputting the M code for C-axis unclamp in the hole opening cycle.	0.000 to 99999.999 (s)
		F1 digit	Specify the feedrate for the F command in the F1-digit	1 to 1000000
1185 1186 1187 1188 1189	spd_F1 F2 F3 F4 F5	feedrate F1 F2 F3 F4	command ("#1079 F1 digit" is set to 1). Feedrate when F1 is issued (mm/min) Feedrate when F2 is issued (mm/min) Feedrate when F3 is issued (mm/min) Feedrate when F4 is issued (mm/min) Feedrate when F5 is issued (mm/min)	(mm/min)
1190 (PR)	s_xcnt (For L system only)	Validate inclined-axis control	0: Disable inclined-axis control1: Enable inclined-axis control	0/1
1191 (PR)	s_angl (For L system only)	Inclination angle	Specify the inclination angle α of the oblique coordinate X' axis from the orthogonal coordinate system's X axis.	-80.000 to 80.000 (degree)
1192 (PR)	(For L	Compensati on at reference point return	 Specify whether to perform compensation for the base axis corresponding to the inclined axis at reference point return. 0: Performs compensation. 1: Does not perform compensation. 	0/1

#		ltems	Details	Setting range (unit)
1193	inpos	Validate in-position check	 Specify the deceleration confirmation method for the positioning command. 0: Command deceleration check (Positioning is completed when the deceleration is completed with the acceleration/deceleration speed issued from the control unit.) 1: In-position check (Positioning is completed by detecting that the servo amplifier has reached within a set distance from the end point. The set distance is set in "#2224 SV024".) 	0: Command deceleration check 1: In-position check
1194	H_acdc	Time constant 0 for handle feed	Specify the time constant for the manual handle feed. 0: Use time constant for G01 1: Time constant 0 (step)	0/1
1195 1196 1197 1198	Mmac Smac Tmac M2mac	Macro call for: M command S command T command Second miscellaneous code	Specify the user macro M, S or T command macro call out. Macro call out with M command Macro call out with S command Macro call out with T command Macro call out with 2nd miscellaneous command	0: Invalid 1: Valid
1199 (PR)	Sselect	Select initial spindle control	Select the initial condition of spindle control after power is turned on. 0: 1st spindle control mode (G43.1) 1: 2nd spindle control mode (G44.1)	0: G43.1 1: G44.1
1200 (PR)		Validate ac- celeration and deceleration with inclination angle constant G0	 Set up acceleration and deceleration types when a rapid traverse command is issued 0: Acceleration and deceleration (conventional) with time constant 1: Acceleration and deceleration with inclination angle constant 	0/1
1201 (PR)	G1_acc	Validate ac- celeration and deceleration with inclination constant G1	 Set up acceleration and deceleration types when a liner interpolation command is issued. 0: Acceleration and deceleration (conventional) with time constant 1: Acceleration and deceleration with inclination angle constant 	
1202	(For L	Distance between facing turrets	Set up the distance between tools (noses) (between turrets).	0 to 99999.999 (mm)

error increased and decreased from -60.0 to 20.0%. compen- sation factor 200 1209 cirdcc Arc Specify the deceleration speed at the arc entrance or deceleration 1 to 1000000 (mm/min)	#		Items	Details	Setting range (unit)
system only) double-turret mirror image with T double-turret command 0 to FFFFFFF 1204 TmirS2 Select (For L Set up turrets for double-turret mirror image with the T double-turret only) 0 to FFFFFFF 1205 G0bdcc Acceleration deceleration before G0 0: G00 acceleration and deceleration are selected as interpolation 0/1 1206 G1bF Maximum speed 3et up a cutting feedrate when selecting acceleration and deceleration before interpolation. 1 to 1000000 (mm/min) 1207 G1bL Time constant Set up a cutting feedrate when selecting acceleration before interpolation. 1 to 5000 (ms) 1207 G1bL Time constant Set up a cutting feedrate when selecting acceleration and deceleration before interpolation. 1 to 5000 (ms) 1208 RCK Arc radius error compen- sation factor An arc radius error compensation amount can be increased and decreased from -60.0 to 20.0%. -60.0 to +20.0 (% (mm/min)	1203	TmirS1	Select	Set up turrets for double-turret mirror image with the T	0 to FFFFFFF
only) mirror image with T command ormand 0 1204 TmirS2 Select Set up turrets for double-turret mirror image with the T double-turret mirror image with the T command that corresponds to tool numbers 33 to 64. 0 to FFFFFFF 1204 TmirS2 Gobdcc Acceleration and that corresponds to tool numbers 33 to 64. 0 to FFFFFFF 1205 G0bdcc Acceleration and that corresponds to tool numbers 33 to 64. 0/1 1 1205 G0bdcc Acceleration and deceleration are selected as those after interpolation regardless of high-accuracy mode. 0 1 1206 G1bF Maximum speed Set up a cutting feedrate when selecting acceleration and deceleration and deceleration. 1 to 100000 (mm/min) 1207 G1bL Time constant Set up a cutting feed time constant when selecting acceleration and deceleration and deceleration. 1 to 5000 (ms) 1207 G1bL Time constant G1bF Set up a cutting feed time constant when selecting acceleration. 1 to 5000 (ms) 1208 RCK Arc radius error compensation and deceleration amount can be increased and decreased from -60.0 to 20.0%. -60.0 to +20.0 (% (mm/min)) 1209 cirdcc Arc Specify the		(For L		command that corresponds to tool numbers 1 to 32.	
1204 TmirS2 Select (For L with T command Set up turrets for double-turret mirror image with the T double-turret mirror image with T command 0 to FFFFFFF 1205 G0bdcc Acceleration and deceleration before G0 0: G00 acceleration and deceleration are selected as those after interpolation. 0/1 1206 G1bF Maximum speed 1: G00 acceleration and deceleration are selected as those before interpolation. 0/1 1207 G1bL Time constant Set up a cutting feed time constant when selecting acceleration and deceleration. 1 to 1000000 (mm/min) 1207 G1bL Time constant Set up a cutting feed time constant when selecting acceleration and deceleration before interpolation. 1 to 5000 (ms) 1208 RCK Arc radius error compen- sation factor An arc radius error compensation amount can be increased and decreased from -60.0 to 20.0%. -60.0 to +20.0 (% (mm/min) 1209 cirdcc Arc deceleration Specify the deceleration speed at the arc entrance or exit. 1 to 1000000		system	double-turret		
1204 TmirS2 Select (For L only) Set up turrets for double-turret mirror image with the T double-turret mirror image with T command Set up turrets for double-turret mirror image with the T command that corresponds to tool numbers 33 to 64. 0 to FFFFFFFF of turrets for double-turret 1205 G0bdcc Acceleration and deceleration before G0 interpolation 0: G00 acceleration and deceleration are selected as those after interpolation regardless of high-accuracy mode. 0/1 1206 G1bF Maximum speed Set up a cutting feedrate when selecting acceleration and deceleration before interpolation. 1 to 1000000 (mm/min) 1207 G1btL Time constant Set up a cutting feed time constant when selecting acceleration and deceleration before interpolation. 1 to 5000 (ms) 1208 RCK Arc radius error compen- sation factor An arc radius error compensation amount can be increased and decreased from -60.0 to 20.0%. -60.0 to +20.0 (% (mm/min) 1209 cirdcc Arc Speely the deceleration speed at the arc entrance or exit. 1 to 1000000		only)			
1204 TmirS2 Select turrets for system only) Select turrets for double-turret onmand that corresponds to tool numbers 33 to 64. 0 to FFFFFFF or FFFFF 1205 G0bdcc Acceleration and deceleration before G0 interpolation 0: G00 acceleration and deceleration are selected as those after interpolation regardless of high-accuracy mode. 0/1 1206 G1bF Maximum speed Set up a cutting feedrate when selecting acceleration and deceleration before interpolation. 1 to 1000000 (mm/min) 1207 G1bL Time constant Set up a cutting feed time constant when selecting acceleration and deceleration before interpolation. 1 to 5000 (ms) 1208 RCK Arc radius error compen- sation factor An arc radius error compensation amount can be increased and deceleration speed at the arc entrance or exit. -60.0 to +20.0 (% (mm/min)			with T		
(For L system only) turrets for double-turret mirror image with T command command that corresponds to tool numbers 33 to 64. 1205 G0bdcc Acceleration and deceleration before G0 interpolation 0: G00 acceleration and deceleration are selected as those after interpolation regardless of high-accuracy mode. 0/1 1206 G1bF Maximum speed Set up a cutting feedrate when selecting acceleration and deceleration before interpolation. 1 to 1000000 (mm/min) 1207 G1btL Time constant Set up a cutting feed time constant when selecting acceleration before interpolation. 1 to 5000 (ms) 1208 RCK Arc radius error compen- sation factor An arc radius error compensation amount can be increased and decreased from -60.0 to 20.0%. -60.0 to +20.0 (% (mm/min) 1209 cirdcc Arc deceleration Specify the deceleration speed at the arc entrance or exit. 1 to 1000000					
system only) double-turret mirror image with T command 0: G00 acceleration and deceleration are selected as those after interpolation regardless of high-accuracy mode. 0/1 1205 G0bdcc Acceleration and deceleration before G0 interpolation 0: G00 acceleration and deceleration are selected as those before interpolation and deceleration are selected as those before interpolation. 0/1 1206 G1bF Maximum speed Set up a cutting feedrate when selecting acceleration before interpolation. 1 to 1000000 (mm/min) 1207 G1btL Time constant Set up a cutting feed time constant when selecting acceleration and deceleration before interpolation. 1 to 5000 (ms) 1208 RCK Arc radius error compen- sation factor An arc radius error compensation amount can be increased and decreased from -60.0 to 20.0%. -60.0 to +20.0 (% (mm/min) 1209 cirdcc Arc Specify the deceleration speed at the arc entrance or exit. 1 to 1000000 (mm/min)	1204	TmirS2	Select	Set up turrets for double-turret mirror image with the T	0 to FFFFFFF
only) mirror image with T command		(For L	turrets for	command that corresponds to tool numbers 33 to 64.	
1205 G0bdcc Acceleration and and and ecceleration and deceleration regardless of high-accuracy mode. 0/1 1206 G1bF Maximum speed 1: G00 acceleration and deceleration are selected as those before interpolation. 0/1 1207 G1bF Maximum speed Set up a cutting feed time constant when selecting acceleration and deceleration before interpolation. 1 to 1000000 (mm/min) 1207 G1btL Time constant Set up a cutting feed time constant when selecting acceleration. 1 to 5000 (ms) 1207 G1btL Time constant Set up a cutting feed time constant when selecting acceleration. 1 to 5000 (ms) 1208 RCK Arc radius error compensation amount can be increased and decreased from -60.0 to 20.0%. -60.0 to +20.0 (% mm/min) 1208 RCK Arc radius error compensation amount can be increased and decreased from -60.0 to 20.0%. -100 to +20.0 (% mm/min) 1208 Cirdcc Arc deceleration exit. Speeify the deceleration speed at the arc entrance or increased in the arc entrance or increased in the arc entrance or increased in the arc entrance or increased		system	double-turret		
1205 G0bdcc Acceleration and deceleration and deceleration regardless of high-accuracy mode. 0/1 1206 G1bF Maximum speed 1: G00 acceleration and deceleration are selected as interpolation. 1 to 1000000 (mm/min) 1207 G1btL Time constant Set up a cutting feed time constant when selecting acceleration (mm/min) 1 to 5000 (ms) 1208 RCK Arc radius error compensation and deceleration amount can be increased and decreased from -60.0 to 20.0%. -60.0 to +20.0 (% m/min) 1208 RCK Arc radius error compensation speed and decreased from -60.0 to 20.0%. -60.0 to +20.0 (% m/min) 1208 RCK Arc radius error compensation speed and decreased from -60.0 to 20.0%. -60.0 to +20.0 (% m/min) 1209 cirdcc Arc Specify the deceleration speed at the arc entrance or exit. 1 to 1000000 (mm/min)		only)	mirror image		
1205 G0bdcc Acceleration and deceleration and deceleration regardless of high-accuracy mode. 0/1 1206 G1bF Maximum speed 1: G00 acceleration and deceleration are selected as those before interpolation. 1 to 1000000 (mm/min) 1207 G1bF Maximum speed Set up a cutting feed take when selecting acceleration and deceleration before interpolation. 1 to 1000000 (mm/min) 1207 G1btL Time constant Set up a cutting feed time constant when selecting acceleration acceleration before interpolation. 1 to 5000 (ms) 1208 RCK Arc radius error compensation amount can be increased and decreased from -60.0 to 20.0%. -60.0 to +20.0 (% (mm/min)) 1209 cirdcc Arc deceleration acceleration speed at the arc entrance or exit. 1 to 1000000 (mm/min)			with T		
and those after interpolation regardless of high-accuracy mode. 1206 G1bF Maximum speed 1: G00 acceleration and deceleration are selected as those before interpolation. 1207 G1bL Time constant Set up a cutting feedtrate when selecting acceleration and deceleration before interpolation. 1 to 1000000 (mm/min) 1207 G1bL Time constant Set up a cutting feed time constant when selecting acceleration acceleration before interpolation. 1 to 5000 (ms) 1207 G1bL Time constant Set up a cutting feed time constant when selecting acceleration. 1 to 5000 (ms) 1208 RCK Arc radius error compensation amount can be increased and decreased from -60.0 to 20.0%. -60.0 to +20.0 (% (mm/min)) 1208 cirdcc Arc deceleration are decleration speed at the arc entrance or exit. 1 to 1000000 (mm/min)			command		
deceleration before G0 interpolation high-accuracy mode. 1206 G1bF Maximum speed Set up a cutting feedrate when selecting acceleration and deceleration before interpolation. 1 to 1000000 (mm/min) 1207 G1btL Time constant Set up a cutting feed time constant when selecting acceleration and deceleration before interpolation. 1 to 5000 (ms) 1207 G1btL Time constant Set up a cutting feed time constant when selecting acceleration and deceleration before interpolation. 1 to 5000 (ms) 1208 RCK Arc radius error compen- sation factor An arc radius error compensation amount can be increased and decreased from -60.0 to 20.0%. -60.0 to +20.0 (% (mm/min) 1209 cirdcc Arc deceleration Specify the deceleration speed at the arc entrance or exit. 1 to 1000000 (mm/min)	1205	G0bdcc	Acceleration	0: G00 acceleration and deceleration are selected as	0/1
1206 G1bF Maximum speed Set up a cutting feedrate when selecting acceleration and deceleration before interpolation. 1 to 1000000 (mm/min) 1207 G1btL Time constant Set up a cutting feed time constant when selecting acceleration before interpolation. 1 to 5000 (ms) 1207 G1btL Time constant Set up a cutting feed time constant when selecting acceleration and deceleration before interpolation. 1 to 5000 (ms) 1208 RCK Arc radius error compen- sation factor An arc radius error compensation amount can be increased and decreased from -60.0 to 20.0%. -60.0 to +20.0 (%, increased and decreased from -60.0 to 20.0%. 1209 cirdcc Arc deceleration Specify the deceleration speed at the arc entrance or exit. 1 to 1000000 (mm/min)			and	those after interpolation regardless of	
Image: interpolation interpolation those before interpolation. 1 to 100000 (mm/min) 1206 G1bF Maximum speed and deceleration before interpolation. 1 to 100000 (mm/min) 1207 G1btL Time constant Set up a cutting feed time constant when selecting acceleration. 1 to 5000 (ms) 1207 G1btL Time constant Set up a cutting feed time constant when selecting acceleration. 1 to 5000 (ms) 1208 RCK Arc radius error compensation amount can be increased and decreased from -60.0 to 20.0%. -60.0 to +20.0 (%) 1209 cirdcc Arc deceleration exit. Specify the deceleration speed at the arc entrance or exit. 1 to 1000000 (mm/min)			deceleration	o	
1206 G1bF Maximum speed Set up a cutting feedrate when selecting acceleration and deceleration before interpolation. 1 to 100000 (mm/min) 1207 G1btL Time constant Set up a cutting feed time constant when selecting acceleration and deceleration before interpolation. 1 to 5000 (ms) 1207 G1btL Time constant Set up a cutting feed time constant when selecting acceleration. 1 to 5000 (ms) 1207 G1btL Time constant Set up a cutting feed time constant when selecting acceleration. 1 to 5000 (ms) 1208 RCK Arc radius error compensation amount can be increased and decreased from -60.0 to 20.0%. -60.0 to +20.0 (%) 1209 cirdcc Arc deceleration exit. Specify the deceleration speed at the arc entrance or exit. 1 to 1000000 (mm/min)			before G0	1: G00 acceleration and deceleration are selected as	
1207 G1btL Time constant Set up a cutting feed time constant when selecting acceleration and deceleration before interpolation. 1 to 5000 (ms) 1207 G1btL Time constant Set up a cutting feed time constant when selecting acceleration and deceleration before interpolation. 1 to 5000 (ms) 1208 RCK Arc radius error compen- sation factor An arc radius error compensation amount can be increased and decreased from -60.0 to 20.0%. -60.0 to +20.0 (%, increased and decreased from -60.0 to 20.0%. 1209 cirdcc Arc deceleration Specify the deceleration speed at the arc entrance or exit. 1 to 1000000 (mm/min)			interpolation	those before interpolation.	
1207 G1btL Time constant Set up a cutting feed time constant when selecting acceleration and deceleration before interpolation. 1 to 5000 (ms) 1207 G1btL Set up a cutting feed time constant when selecting acceleration and deceleration before interpolation. 1 to 5000 (ms) Speed Image: speed Image: speed Image: speed Image: speed G1bF Image: speed Image: speed Image: speed Image: speed I208 RCK Arc radius error compen- sation factor An arc radius error compensation amount can be increased and decreased from -60.0 to 20.0%. -60.0 to +20.0 (%) I209 Cirdcc Arc deceleration Specify the deceleration speed at the arc entrance or exit. 1 to 1000000 (mm/min)	1206	G1bF	Maximum	Set up a cutting feedrate when selecting acceleration	1 to 1000000
constant acceleration and deceleration before interpolation. Speed Image: speed G1bF Image: speed G1bF Image: speed G1bF Image: speed I208 RCK Arc radius error compensation amount can be increased and decreased from -60.0 to 20.0%. 1209 cirdcc Arc deceleration Specify the deceleration speed at the arc entrance or exit.			speed	and deceleration before interpolation.	(mm/min)
1208 RCK Arc radius error compensation amount can be increased and decreased from -60.0 to 20.0%. -60.0 to +20.0 (%) 1209 cirdcc Arc deceleration exit. Specify the deceleration speed at the arc entrance or exit. 1 to 1000000 (mm/min)	1207	G1btL	Time	Set up a cutting feed time constant when selecting	1 to 5000 (ms)
1208 RCK Arc radius error compensation amount can be increased and decreased from -60.0 to 20.0%. -60.0 to +20.0 (%) 1209 cirdcc Arc deceleration exit. Specify the deceleration speed at the arc entrance or exit. 1 to 1000000 (mm/min)			constant	acceleration and deceleration before interpolation.	
1208 RCK Arc radius error compensation amount can be increased and decreased from -60.0 to 20.0%. -60.0 to +20.0 (%) 1209 cirdcc Arc deceleration exit. Specify the deceleration speed at the arc entrance or exit. 1 to 1000000 (mm/min)				Speed	
1208 RCK Arc radius error compen- sation factor An arc radius error compensation amount can be increased and decreased from -60.0 to 20.0%. -60.0 to +20.0 (%) 1209 cirdcc Arc deceleration Specify the deceleration speed at the arc entrance or exit. 1 to 1000000 (mm/min)				1	
1208 RCK Arc radius error compen- sation factor An arc radius error compensation amount can be increased and decreased from -60.0 to 20.0%. -60.0 to +20.0 (%) 1209 cirdcc Arc deceleration Specify the deceleration speed at the arc entrance or exit. 1 to 1000000 (mm/min)					
1208 RCK Arc radius error compen- sation factor An arc radius error compensation amount can be increased and decreased from -60.0 to 20.0%. -60.0 to +20.0 (%) 1209 cirdcc Arc deceleration Specify the deceleration speed at the arc entrance or exit. 1 to 1000000 (mm/min)					
1208 RCK Arc radius error compen- sation factor An arc radius error compensation amount can be increased and decreased from -60.0 to 20.0%. -60.0 to +20.0 (%) 1209 cirdcc Arc deceleration Specify the deceleration speed at the arc entrance or exit. 1 to 1000000 (mm/min)					
1208 RCK Arc radius error compen- sation factor An arc radius error compensation amount can be increased and decreased from -60.0 to 20.0%. -60.0 to +20.0 (%) 1209 cirdcc Arc deceleration Specify the deceleration speed at the arc entrance or exit. 1 to 1000000 (mm/min)					
1208 RCK Arc radius error compen- sation factor An arc radius error compensation amount can be increased and decreased from -60.0 to 20.0%. -60.0 to +20.0 (%) 1209 cirdcc Arc deceleration Specify the deceleration speed at the arc entrance or exit. 1 to 1000000 (mm/min)				G1bE	
I208 RCK Arc radius error compen- sation factor An arc radius error compensation amount can be increased and decreased from -60.0 to 20.0%. -60.0 to +20.0 (%) 1209 cirdcc Arc deceleration Specify the deceleration speed at the arc entrance or exit. 1 to 1000000 (mm/min)					
I208 RCK Arc radius error compen- sation factor An arc radius error compensation amount can be increased and decreased from -60.0 to 20.0%. -60.0 to +20.0 (%) 1209 cirdcc Arc deceleration Specify the deceleration speed at the arc entrance or exit. 1 to 1000000 (mm/min)					
1208 RCK Arc radius error compen- sation factor An arc radius error compensation amount can be increased and decreased from -60.0 to 20.0%. -60.0 to +20.0 (%) 1209 cirdcc Arc Specify the deceleration speed at the arc entrance or exit. 1 to 1000000 (mm/min)					
error increased and decreased from -60.0 to 20.0%. compen-sation factor 1209 cirdcc Arc Specify the deceleration speed at the arc entrance or deceleration error to 1000000 (mm/min)				G1btL	
error compen- sation factor increased and decreased from -60.0 to 20.0%. 1209 cirdcc Arc deceleration Specify the deceleration speed at the arc entrance or exit. 1 to 1000000 (mm/min)	1208	RCK	Arc radius	An arc radius error compensation amount can be	-60.0 to +20.0 (%)
compen- sation factor compen- sation factor compen- sation factor 1209 cirdcc Arc Specify the deceleration speed at the arc entrance or deceleration 1 to 1000000 (mm/min)			error	increased and decreased from -60.0 to 20.0%.	. ,
sation factor sation factor 1209 cirdcc Arc Specify the deceleration speed at the arc entrance or deceleration 1 to 1000000 (mm/min)			compen-		
deceleration exit. (mm/min)					
deceleration exit. (mm/min)	1209	cirdcc	Arc	Specify the deceleration speed at the arc entrance or	1 to 1000000
			deceleration		(mm/min)
speed			speed		

#	Items	Details	Setting range (unit)
1210	RstGmd Modal G	Specify whether to initialize each G code group modal	Specify a
	code reset	and the H and D codes when the system is reset.	hexadecimal
		Specify the initialization items in bit correspondence.	number.
		0. Initialize. 1: Do not initialize.	
		M system	
		0 Group 1 Move G modal	
		1 Group 2 Flat selection modal	
		2 Group 3 Absolute/increment command modal	
		3	
		4 Group 5 Feed G modal 5 Group 6 Inch/metric modal	
		6 Group 7 Radius compensation modal	
		7 Group 8 Length compensation modal	
		8	
		9 Group 10 Fixed cycle return command modal	
		B Group 12 Workpiece coordinate system modal	
		C Group 13 Cut modal	
		D	
		10 Group 17 Constant surface speed control command modal	
		11	
		12 Group 19 G command mirror modal	
		13 Group 20 Spindle 2 control modal	
		15	
		17	
		18 H, D codes	
		19	
		1A 1B	
		10	
		1D	
		1F	
		The H code indicates the tool length offset number, and	
		the D code indicates the tool radius compensation	
		number.	
		When bit 18 is set to on, the H and D codes and group 8	
		G modal area retained.	
		When bit 7 is set to on, the H code and group 8 G modal	
		are retained.	

#		Items	Details	Setting range (unit)
1210	RstGmd	Modal G	L system	Specify a
		code reset	0 Group 1 Move G modal	hexadecimal
			1 Group 2 Flat selection modal	number.
			2 Group 3 Absolute/increment command modal	
			3 Group 4 Barrier check modal 4 Group 5 Feed G modal	
			5 Group 6 Inch/metric modal	
			6 Group 7 Nose radius compensation modal	
			7	
			8 9 Group 10 Fixed cycle return command modal	
			A	
			B Group 12 Workpiece coordinate system modal	
			C Group 13 Cut modal	
			10 Group 17 Constant surface speed control command modal 11 Group 18 Balance cut 12	
1211	FHtyp	Feed hold	Specify the type of the external signal used for feed	0 to 2
1211	i i ityp	stop type	hold.	0.02
		Sich ihe		
			0: Disable the external signal.	
			1: Enable the external signal (contact A)	
		<u> </u>	2: Enable the external signal (contact B)	
1212	FHno	Feed hold	Specify the number (X??) of the device used to input	000 to 3FF
		external	the feed hold signal.	(hexadecimal)
		signal	(Note) The setting range of this parameter has been	,
		device	expanded on the software Ver.D0 and later.	
1016	ovtdoo			1 to 100000
1216	extdcc	External	Use an upper limit value at the feedrate indicated when	1 to 100000
		deceleration	validating external deceleration signals.	(mm/min)
		level		
1217	aux01		Not used.	

(k a (k	aux02 (bit3) aux02 (bit4)	Parameter input/output format Tool number selection	Specify a parameter input/output format. 0: Type I 1: Type II Specify the R register that contains the tool number used for automatic calculation when measuring the	0/1
a (t	aux02	format Tool number	1: Type II Specify the R register that contains the tool number	0/1
(t		Tool number	Specify the R register that contains the tool number	0/1
(t				0/1
	bit4)	selection	used for automatic calculation when measuring the	
a			used for automatic calculation when measuring the	
а			coordinate offset of an external work piece.	
a			0: Conforms to "#1130 set_t".	
а			1: Uses the tool number indicated by user PLC	
	aux02	Parameter	Specify the spindle specification address of parameter	0/1
()	bit5)	I/O II spindle	I/O type II.	
		specification	0: C	
		address	1: T	
			This parameter also applies to the spindle specification	
			address for input and collation.	
			(Note) This parameter is valid only for parameter I/O	
			type II ("#1218 aux02/bit 3" is 1).	
а	aux02	Set No. valid	Specify which program No. is selected when inputting	0/1
()	bit6)	when	operation using "#1 MAIN PROGRAM" in Data I/O	
		program	screen.	
		input	0: The No. in the input data is valid.	
		•	1: The No. set in the data setting area is valid.	
а	aux02	Input by	When inputting the machining program in the "Data	0/1
()	bit7)	program	input" screen, select one of the following options when	
		overwrite	the input program has already been registered:	
			0: Outputs error message "E65 PROG. No. DUPLI"	
			1: Input by overwrite	
1219 a	aux03	Stop high-	Set 1 to disable the function that stops the system when	0/1
()	bit1)	speed PC	the high-speed processing time is extended.	
		monitoring	Disable the monitoring function only as a temporary	
		function	measure.	
а	aux03	Improve skip	0: Skip accuracy (conventional specification)	0/1
	bit2)	coordinate	1: Changes skip accuracy (correct a position in skip	
Ì	,	accuracy	coordinates when entering skip signals).	
a	aux03	· · ·	Reserved for the system.	0
	bit3)		<i>,</i>	

#		Items	Details	Setting range (unit)
#	aux03 (bit7)	Items Time constant setting changeover for software acceleration/ deceleration	Details 0: Accelerating time is G0tL(G1tL). If the time is set to the software acceleration/deceleration 2nd step time constant (#2005 G0t1) under such condition as the acceleration/deceleration before G00 interpolation and the software acceleration/deceleration are used one together, the inclination at software acceleration/deceleration for G28/G30 will be larger than that for G00. Speed Cott_Gott_Gott_ Acceleration 1. Total accelerating time is "G0L". 2. The time for curve part is "G0t1". 3. The time for linear part is obtained by "G0tL-(2×G0t1)".	Setting range (unit) 0/1
			(Continued on the next page)	

#		ltems	Details	Setting range (unit)
			 (Continued from the previous page) 1: Accelerating time is obtained by G0tL+G0t1 (G1tL+G1t1). When the acceleration/deceleration before G00 interpolation and the software acceleration/deceleration are used one together, if the same time is set to S-curve filter time (#1131 F1dcc) and the software acceleration/deceleration 2nd step time constant (#2005 G0t1), the G00 acceleration can be obtained equals as G28/G30. Speed GotL GotL Got1 GotL+G0t1 Cot1 GotL+G0t1 Cot1+G0t1 Cot1+G0t1 Cot1+G0t1 Cot1-Cot1-Cot1-Cot1-Cot1-Co	
1220	aux04 (bit 0) (For L system only)	Tool life check timing selection	 Specify the life check standard applicable when the use count is incremented in tool life management II. 0: Determines that the tool life is over when the incremented use count exceeds the life count. (Use count > life count) 1: Determines that the tool life is over when the incremented use count has reached the life count. (Use count. (Use count ≥ life count) 	0/1 (Default: 0)

#		Items	Details	Setting range (unit)	
1220	aux04	Validity of	Validate or invalidate the space code described in the	0/1	
	(bit1)	space code	comment statements in the machining program in edit		
		in comment	operation with the custom display.	(Default: 0)	
			0: Invalidate the space code in the comment		
			statements of the machining program.		
			1: Validate the space code in the comment		
			statements of the machining program.		
1221	aux05		Not used.		
1222	aux06		Not used.	0	
	(bit0)				
	aux06		Not used.	0	
	(bit1)			-	
	aux06	Enable/disable	Specify whether to enable the setup parameter lock	0/1	
	(bit3)	setup	function.	0,1	
	(0100)	parameter lock			
			1: Enable		
	aux06		Not used.	0	
	(bit7)		Not used.	0	
1223	aux07		Not used.	0	
1223			Not used.	0	
	(bit0)		Netwood		
	aux07		Not used.	0	
	(bit1)				
	aux07		Not used.	0	
	(bit2)				
	aux07		Not used.	0	
	(bit3)				
	aux07		Not used.	0	
	(bit4)				
	aux07		Not used.	0	
	(bit5)				
	aux07	Cancel	0: Retains a spindle rotation speed (, S) when	0/1	
	(bit6)	synchronous	performing synchronous tap retract.		
		tap (,S)	1: Cancels a spindle rotation speed (, S) by retract		
		retract	with G80.		
	aux07	Synchronous	Specify a synchronous tap method.	0/1	
	(bit7)	tap method	0: Synchronous tap (multi-step acceleration and		
			deceleration and rapid return)		
			1: Conventional type synchronous tap		
1224	aux08		Unusable. Set 0 for this option.		
1225	aux09	Enable/disable	Specify whether to enable spindle rotation clamp by	0/1	
	(bit7)	spindle rotation			
	(2)	clamp	of the spindle rotation command (R3210) specified by		
			the user ladder.		
			0: Enable		
			1: Disable		

#		Items	Details	Setting range (unit)
1226	aux10 (bit0)	Tool compen- sation data for external workpiece coordinate offset measurement	Select the tool offset data to be used for external workpiece coordinate offset measurement. 0: Tool length data and nose wear data 1: Tool length data	0/1
	aux10 (bit1)	Optional block skip type	 Specify whether to enable optional block skipping in the middle of a block. 0: Enable block skipping only at the beginning of a block. 1: Enable block skipping at the beginning of the block and in the middle of a block. 	0/1
	aux10 (bit2)	Single block stop timing	 Specify the time at which the single block signal is activated. 0: When the signal goes on while automatic operation is starting, the block stops after it is finished. 1: When the signal is on at the end of the block, the block stops. 	0/1
	aux10 (bit3)		Not used.	0
	aux10 (bit4)	S command during constant surface speed	 Specify whether to output a strobe signal when the S command is issued in constant surface speed mode. 0: Output no strobe signal in constant surface speed mode. 1: Output strobe signals in constant surface speed mode. 	0/1
	aux10 (bit5)	Dog/OT signal arbitrary assignment valid	 Specify whether to enable the arbitrary allocation parameter for the origin dog and H/W OT. 0: Disable arbitrary allocation. (Fixed devices are valid.) Note that when the backup module for powerfailure is mounted, all dog signals allocation will be disabled, however, OT signals will be allocated to the fixed devices. 1: Enable arbitrary allocation. (Devices specified by #2073 to #2075 parameters) 	0/1

#		Items	Details	Setting range (unit)
1226	aux10	Setup and	Specify the unit to be used as the setup/display unit or	0/1
	(bit6)	display unit	handle feed unit, the command unit or internal unit.	
			0: Internal unit	
			1: Unit specified by command	
			(Note 1) This parameter is valid only in initial millimeter	
			mode (0 is set in "#1041 I_inch"). The internal unit is always used in initial inch	
			mode (1 is set in "#1041 I_inch").	
			(Note 2) This parameter is validated immediately after	
			it is set.	
			(Note 3) If addition setting is performed for tool and	
			workpiece offset data with the command unit	
			being inch and internal unit being mm, an	
			error may be generated.	
			Related parameter: #1152 I_G20 (Initial command	
			unit)	
	aux10	Shorten JOG	Specify whether to shorten the JOG stop time.	0/1
	(bit7)	stop time	0: Do not shorten the JOG stop time. (Same as	
			before)	
			1: Shorten the JOG stop time.	
1227	aux11	Select PLC	Set up this option when disabling the cutting start	0/1
	(bit0)	signal or	interlock by spindle feedrate attained.	
		spindle	0: Cutting start interlock by PLC signal	
		feedrate	1: Cutting start interlock by spindle feedrate attained	
		attained	-	
	aux11	Select H or D	Set up this option to validate the data that is set up on	0/1
	(bit1)	code	the tool life management screen when issuing the H99	
			or D99 command.	
			0: The H and D codes validate the data that is set up	
			on the management setup screen.	
			1: Validates the data that is set up on the manage-	
			ment setup screen when issuing the H99 or D99 command.	
			commanu.	

#		Items	Details	Setting range (unit)
1227	aux11 (bit2)	Measures against tool setter chattering	 Select a condition where a relieving operation completes after measurement with tools. 0: Sensor signals have stopped for 500 ms or longer. 1: 100 μs or longer has passed after sensor signals stopped. 	0/1
	aux11 (bit3)	Absolute coordinate switching (nose R)	 Select whether to display a nose position or coordinate value with the absolute coordinate counter. 0: Displays the nose position. 1: Displays the position specified by program command. 	0/1
	aux11 (bit4)	Program address check	Specify whether to simply check the program addresswhen the machining program is executed.0: Does not check the program address.1: Checks the program address.	0/1
	aux11 (bit5)	Spindle rotation speed clamp	 Specify whether to clamp the rotation speed in constant surface speed mode when the spindle rotation clamp command is issued. 0: Clamps the rotation regardless of the constant surface speed mode. 1: Clamps the rotation only in constant surface speed mode. 	0/1
	aux11 (bit6)		Not used.	0
	aux11 (bit7)	Switch the range of tool life data to be input	 Set up the range of tool life data to be input or compared. 0: Inputs or compares all of the data output. 1: Inputs or compares part of the data output 1) Tool life management I data to be input or compared tool number (D), lifetime (E), life count (F), and auxiliary data (B). 2) Tool life management II data to be input or compared Group number (G), method (M), life (E/F), tool number (D), and compensation number (H) 	0/1

#	Items		Details	Setting range (unit)
1228	aux12	Switch	Set up this option to switch the coordinate value	0/1
	(bit0)	coordinate	screen.	
		value screen	0: 80-character screen	
			1: 40-character screen	
	aux12	Switch offset	Set up this option to switch the offset and parameter	0/1
	(bit1)	and	screen to the parameter screen.	
		parameter	0: Displays the offset and parameter screen.	
		screen	1: Displays the parameter screen.	
	aux12	Switch data	Set up the range of data protection in data transmission	0/1
	(bit2)	protection in	mode.	
		data	0: Protects both send and receive data.	
		transmission	1: Protects receive data only.	
		mode		
	aux12	Nose R	Select whether to specify the nose R compensation by	0/1
	(bit3)	specification	shape or wear number.	
	. ,	•	0: Specifies the nose R compensation by shape	
			number.	
			1: Specifies the nose R compensation by wear	
			number.	
	aux12	Select	Specify both block cutting start interlock and cutting	0/1
	(bit4)	operation	start interlock as the operation error or stop code.	
	、 ,	error or stop	0: Operation error	
		code	1: Stop code	
	aux12	Select	Select constant surface speed coordinates.	0/1
	(bit5)	constant	0: Workpiece coordinate value	
	、 ,	surface	1: Absolute coordinate value	
		speed		
		coordinates		
	aux12	Switch	0: Includes coordinate preset amounts in relative	0/1
	(bit6)	relative	values (absolute values).	
	、 ,	values	1: Does not coordinate preset amounts in relative	
		displayed	values (absolute values).	
	aux12	Protection	Set up this option to protect a manual value command.	0/1
	(bit7)	with manual	0: Does not protect the manual value command	
	、	value	(same as before).	
		command	1: Protects the manual value command.	
1229	set01	Subprogram	0: Specifies the user macro interrupt of macro type.	0/1
	(bit0)	interrupt	1: Specifies the user macro interrupt of sub-program	
	()		type.	
	set01	Accurate	0: Address E specifies the number of threads per inch	0/1
	(bit1)	thread	for inch screw cutting.	
	(2)	cutting E	1: Address E specifies precise reading for inch screw	
		L and a l	cutting.	

#		Items	Details	Setting range (unit)
1229	set01	Radius	0: When the start-up and cancel commands are	0/1
	(bit2)	compen-	operated during radius compensation, their blocks	
		sation type B	are not handled by intersection operation	
		(For M	processing; they are handled as offset vectors in the	
		system only)	direction vertical to that of the commands.	
			1: When the start-up and cancel commands are	
			operated during radius compensation, the inter-	
			section operation processing of the command block and the next block is executed.	
				0/4
		Nose R	0: When the start-up and cancel commands are	0/1
		compen-	operated during nose R, their blocks are not	
		sation type B	handled by intersection operation processing; they	
		(For L	are handled as offset vectors in the direction	
		system only)	vertical to that of the commands.	
			1: When the start-up and cancel commands are	
			operated during nose R, the intersection operation	
			processing of the command block and the next	
			block is executed.	2//
	set01	Initial	0: The initial state after power-on is a constant	0/1
	(bit3)	constant	surface speed control cancel mode.	
		surface	1: The initial state after power-on is a constant	
		speed	surface speed control mode.	0//
	set01	Synchronous	0: Handles the tap cycles as the tap cycles with a	0/1
	(bit4)	tap	floating tap chuck.	
			1: Handles the tap cycles as the tap cycles without a	
	10.4		floating tap chuck.	0/4
	set01	Start point	Select an operation when the operation start point	0/1
	(bit5)	alarm	cannot be found while moving the next block of G117.	
			0: Enables an auxiliary function after the block has	
			been moved.	
			1: Outputs a program error (P33) when the	
	a a t 0 1	Orid diambar	operation start point is not found.	0/4
	set01	Grid display	Select a grid type to be displayed on the servo monitor	0/1
	(bit6)	selection	screen during dog type reference point return. 0: Selects the distance between dog ON and	
			reference point (including a grid mask amount).	
			1: Selects a value given by reducing a grid mask	
			°, °	
			amount from the distance between dog ON and	
1230	set02		reference point. Not used.	
1230	set03		Not used.	
	set04		Not used.	
	set04		Not used.	
1200	30100		1101 0360.	

#		Items	Details	Setting range (unit)
1234	set06		Not used.	
1235	set07		Not used.	
1236	set08 (bit0)	Manual rotation axis feedrate unit	Select the unit of manual rotation axis feedrate. 0: Fixed to [°/min] 1: Same speed as before	0/1
1237 (PR)	set09 (bit0)	External workpiece offset	 Set up this function to use the external workpiece coordinates by shifting them to the Z axis. 0: Does not reverse the sign of external workpiece offsets (Z shift) (same as before). 1: Reverses the sign of external workpiece offsets (Z shift). (Note) When the sign of external workpiece offsets (Z shift) has been reversed, do not measure those external workpiece offsets. However, the external workpiece offsets can be measured by tool pre-setter. 	0/1
1238 (PR)	set10		Not used.	
1239 (PR)	set11 (bit0)	Coil switching method	 0: Via PLC. (YD3F) 1: NC internal processing. (YD3F is invalid.) (Note) As for C6/C64/C64T, always set "1" when using MDS-B-SP and later. However, if the system structure needs the mechanical gears for spindles, set "0". 	0/1
1240 (PR)	set12 (bit0)	Handle input pulse	Select the handle input pulse. 0: MELDAS standard handle pulse 1: Handle 400 pulse	0/1
	set12 (bit1)	Megatorque motor handle feed magnifi- cation	 Select the magnification of megatorque motor handle 1 pulse. 0: Double the handle 1 pulse magnification specified by the handle feed magnification signal (Y780, Y781, Y782). 1: Use the handle 1 pulse magnification specified by the handle feed magnification signal (Y780, Y781, Y782) as is. 	0/1

#	Items		Details	Setting range (unit)
1265	ext01	Command	Select the command format.	0
(PR)	(bit0)	format	0: Conventional format	
1266	ext02		Not used.	
(PR)				
1267	ext03	G code type	Select the G code type.	0/1
(PR)	(bit0)		This parameter is valid when 1 is set in "#1265 ext01 bit	
			0 (command format)".	
1268	ext04		Not used.	
(PR)				
1269	ext05		Not used.	
(PR)				
1270	ext06		Not used.	
(PR)				
1271	ext07	Mirror image	Select the type of mirror image operation. Not applied	0/1
(PR)	(bit0)	operation	to this CNC.	(Default: 0)
			0: Type 1	
			 The program mirror image, external mirror 	
			image, and parameter mirror image are	
			exclusive to each other.	
			 An increment command moves the image to 	
			the position indicated by the move amount with	
			the sign inverted.	
			1: Type 2	
			 Mirror image operation is enabled when the 	
			program mirror image (G51.1) command is	
			issued or when the external signal or	
			parameter is ON.	
			 An increment command moves the image to 	
			the position determined by applying the mirror	
			image to the absolute program coordinates.	
	ext07	Address	Specify the address that specifies the fixed-cycle	0/1
	(bit1)	specifying	repetition count. Not applied to this CNC.	(Default: 0)
		fixed-cycle	0: Address L only	
		repetition	1: Addresses K and L	
		count (For M	If addresses K and L are specified simultaneously, the	
		system only)	data at address K is used for operation.	2//
	ext07	F-command	Specify the unit to be used if a thread cutting read	0/1
	(bit2)	unit	command contains on decimal point. Not applied to this	(Default: 0)
			0: Type 1 (conventional specifications)	
			$F1 \rightarrow 1 \text{ mm/rev}, 1 \text{ inch/rev}$	
			1: Type 2	
			$F1 \rightarrow 0.01 \text{ mm/rev}, 0.0001 \text{ inch/rev}$	

#		Items	Details	Setting range (unit)
1271 (PR)	ext07 (bit3)	G-code group for unidirectiona I positioning (for M system only)	Specify the G-code group for unidirectional positioning. Not applied to this CNC. 0: Unmodal G code (group 00) 1: Modal G code (group 01) Related parameter: "#8209 G60 SHIFT"(Set the last positioning direction and distance for each axis applicable when the unidirectional positioning command is issued.)	0/1
	ext07 (bit4)	Operation by independent G40 command	 Specify the mode of canceling tool radius compensation vector by the independent G40 command. Not applied to this CNC. 0: Type 1 (conventional specifications) The independent G40 command cancels the tool radius compensation vector. 1: Type 2 The tool radius compensation vector is not canceled by the independent G40 command but is canceled by the next move command for the tool radius compensation plane. 	0/1 (Default: 0)
	ext07 (bit5)	Cut start position (For L system only)	 Specify the position from where cutting begins in a composite-type fixed cycle for lathe. 0: Conventional specifications The cut start position is determined by the final shaping program. 1: Extended specifications The cut start position is determined from the cycle start point. 	0/1 (Default: 0)
	ext07 (bit6)	Nose R compensa- tion (For L system only)	Specify whether to apply nose R compensation to shapes in a rough cutting cycle. 0: Conventional specifications	0/1 (Default: 0)

#		Items	Details	Setting range (unit)
1271 (PR)	ext07 (bit7)	Cut amount (For L system only)	 Specify the operation to be performed when the program-specified cut amount exceeds the cut amount of the final shaping program. 0: Conventional specifications A program error occurs if the program-specified cut amount exceeds the cut amount of the final shaping program. 1: Extended specifications Rough cutting is performed by one cut if the program-specified cut amount exceeds the cut amount exceeds the cut amount exceeds the cut amount exceeds the cut amount of the final shaping program. 	0/1 (Default: 0)
1272 (PR)	ext08 (bit1)	M function synchronous tap cycle	Specify whether to enable the M function synchronous tap cycle. 0: Disable 1: Enable	0/1
1273 (PR)	ext09		Not used.	
1274 (PR)	ext10		Not used.	
1275 (PR)	ext11		Not used.	
1276 (PR)	ext12		Not used.	
1277 (PR)	ext13 (bit0)	Tool life management Il count type 2	 Specify how and when the mount or use count is incremented in tool life management II. 0: Type 1 The count is incremented when the spindle is used for cutting. 1: Type 2 The count is incremented for the tool used or mounted for one program. The increment is enabled by resetting. 	0/1 (Default: 0)
(PR)	ext14		Not used.	
1279 (PR)	ext15		Not used.	
1280 (PR)	ext16		Not used.	
1281 (PR)	ext17		Not used.	
1282 (PR)	ext18		Not used.	
1283 (PR) 1284	ext19 ext20		Not used.	
(PR) 1285 (PR)	ext21		Not used.	

#		Items	Details	Setting range (unit)
1286 (PR)	ext22		Not used.	
1287 (PR)	ext23 (bit0)	Workpiece coordinate display	 Select the mode of displaying the workpiece coordinate counter. 0: Does not update the display immediately after workpiece coordinate data is changed. 1: Updates the display immediately after workpiece coordinate data is changed. 	0/1
	ext23 (bit4)	Relative coordinate display	 (M system) 0: Displays the actual position including tool length compensation. 1: Displays the machining position in terms of a program command excluding tool length compensation. (L system) 0: Displays the actual position including tool shape compensation. 1: Displays the machining position in terms of a program command excluding tool shape compensation. 	0/1
	ext23 (bit5)	Relative coordinate display	 (M system) 0: Displays the actual position including tool radius compensation. 1: Displays the machining position in terms of a program command excluding tool radius compensation. (L system) 0: Displays the actual position including nose R compensation. 1: Displays the machining position in terms of a program command excluding nose R compensation. 	0/1
	ext23 (bit6)	Absolute coordinate display	 (M system) 0: Displays the actual position including tool length compensation. 1: Displays the machining position in terms of a program command excluding tool length compensation. (L system) 0: Displays the actual position including tool shape compensation. 1: Displays the machining position in terms of a program command excluding tool shape compensation. 	0/1

#		Items	Details	Setting range (unit)
	ext23 (bit7)	Absolute coordinate display	 (M system) 0: Displays the actual position including tool radius compensation. 1: Displays the machining position in terms of a program command excluding tool radius compensation. (L system) 0: Displays the actual position including nose R compensation. 1: Displays the machining position in terms of a program command excluding nose R compensation. 	0/1
1288 (PR)	ext24		Not used.	
1289 (PR)	ext25		Not used.	
1290 (PR)	ext26		Not used.	
1291 (PR)	ext27		Not used.	
1292 (PR)	ext28		Not used.	
1293 (PR)	ext29		Not used.	
1294 (PR)	ext30		Not used.	
1295 (PR)	ext31		Not used.	
1296 (PR)	ext32		Not used.	
1297 (PR)	ext33		Not used.	
1298 (PR)	ext34		Not used.	
1299 (PR)	ext35		Not used.	
1300 (PR)	ext36 (bit7)	Spindle synchro- nization command method	 Select the command method for spindle synchronous control. 0: Spindle synchronous control II (Controlled by PLC I/F) 1: Spindle synchronous control I (Controlled by G code) 	0/1

#		ltems	Details	Setting range (unit)
1301	nrfchk	Origin	Select the high-speed check method of the origin	0 to 2
		neighboring	neighboring signal.	
		check	0: Does not check positions near the origin at high	
		method	speeds. (Conventional specifications)	
			1: Checks positions near the origin at high speeds	
			using command machine positions.	
			2: Checks positions near the origin at high speeds	
			using detector feedback positions.	
1501	polyax	Rotational	Specify the number of the rotational tool axis (servo	0 to controlled axis
	(For L	tool axis	axis) used for polygonal machining (G51.1). Specify 0	number
	system	number	when polygonal machining is not performed. A value	
	only)		exceeding the base specification parameter "#1002	
	2,		axisno" cannot be specified.	
			This parameter is valid when the G code system is 6 or	
			7 (7 or 8 is set in base specification parameter "#1037	
			cmdtyp").	
1505	ckref2	Second	Specify the trigger for a check at the specified position	0/1
		reference	in manual second reference point return mode.	
		point return	0: Completion of spindle orientation	
		check	1: Generation of second reference point return	
			interlock signal	
1510	DOOR_H	Shorten door	Specify whether to shorten the time during which the	0/1
		interlock II	axis is stopped when the door is opened.	
		axis stop	0: Uses the conventional axis stop time.	
		time	1: Shortens the axis stop time.	
			(Note) When the door interlock II signal is input via a	
			ladder, the conventional axis stop time is used.	
1511	DOORPm	Signal input	Specify the fixed device number (X??) for door	000 to 3FF
		device 1 for	interlock II signal input for each part system.	(hexadecimal)
		door interlock	A device number from X001 to X3FF can be specified.	
		II: for each	Device number 000 is invalid.	
		part system	Specify device number 100 when using no fixed device	
			number for door interlock II signal input.	
			(Note) The setting range of this parameter has been	
			expanded on the software Ver.D0 and later.	
			Related parameter: #1154 pdoor (Door interlock II for	
			each part system)	
1512	DOORPs	Signal input	Specify the fixed device number (X??) for door	000 to 3FF
		device 2 for	interlock II signal input for each part system.	(hexadecimal)
		door interlock	(Specify the same value as that of #1155.)	
		II: for each	(Note) The setting range of this parameter has been	
		part system	expanded on the software Ver.D0 and later.	
			Related parameter: #1154 pdoor (Door interlock II for	
			each part system)	

#	Items	Details	Setting range (unit)
1801	Hacc_c	Arc radius clam acceleration	-99999999 to
			+99999999
1802	Macc_c	Acceleration check at middle speed	-99999999 to
			+99999999
1803	Lacc_c	Acceleration check at low speed	-99999999 to
			+99999999
1811	Hcof_A	X-axis high acceleration coefficient β	-99999999 to
			+99999999
1812	Hcof_B	X-axis high acceleration coefficient α	-99999999 to
			+99999999
1813	Mcof_A	X-axis middle acceleration coefficient β	-99999999 to
		,	+99999999
1814	Mcof_B	X-axis middle acceleration coefficient α	-99999999 to
			+99999999
1815	Lcof_A	X-axis low acceleration coefficient β	-99999999 to
			+99999999
1816	Lcof_B	X-axis low acceleration coefficient α	-99999999 to
			+99999999
1817	mag_C	X-axis change magnification θ [%]	-99999999 to
		Set 0 when no compensation or change is executed.	+99999999
1821	Hcof_A	Y-axis high acceleration coefficient β	-99999999 to
		, ,	+99999999
1812	Hcof_B	Y-axis high acceleration coefficient α	-99999999 to
			+99999999
1813	Mcof_A	Y-axis middle acceleration coefficient β	-99999999 to
		,	+99999999
1814	Mcof_B	Y-axis middle acceleration coefficient α	-99999999 to
			+99999999
1815	Lcof_A	Y-axis low acceleration coefficient β	-99999999 to
		,	+99999999
1816	Lcof_B	Y-axis low acceleration coefficient α	-99999999 to
			+99999999
1817	mag_C	Y-axis change magnification θ [%]	-99999999 to
		Set 0 when no compensation or change is executed.	+99999999

#	Items	Details	Setting range (unit)
1901 (PR)	station addr	Set up a station address number (the NC is the n-th slave station).	1 to 7
1902 (PR)	Din size	Set up the size of the data to be transferred from the PC to the NC (from the master station to the slave station) in bytes (8 points).	0 to 32 (bytes (8 bits))
1903 (PR)	Dout size	Set up the size of the data to be transferred from the NC to the PC (from the slave station to the master station) in bytes (8 points).	0 to 32 (bytes (8 bits))
1904 (PR)	data length	Set up the data length of a character.	0 to 2 : 7 bits 3 : 8 bits
1905 (PR)	baud rate	Set up a data transfer rate. The transfer rate differs according to operation clock rates.	Clock: 6/10 MHz 0: 38400 / 57600 1: 19200 / 28800 2: 9600 / 14400 3: 4800 / 7200 4: 2400 / 3600 5: 1200 / 1800 6: 600 / 900 (bps)
1906 (PR)	stop bit	Set up the stop bit length.	0 and 1: 1 bit 2 and 3: 2 bits
1907 (PR)	parity check	Select whether to make a parity check.	0: Invalid 1: Valid
1908 (PR)	even parity	Select the odd or even parity bit. If no parity check is specified, this parameter is ignored.	0: Odd parity1: Even parity
1909 (PR)	Tout (ini)	(ini) specifies a time-out from when the connection check sequence finishes to when the first usual sequence (input) finishes.	0 to 999 (0.1 s)
1910 (PR)	(run)	(run) specifies a time-out from when the NC (slave station) outputs usual sequence data to when the next usual sequence data is input.	
		If the time-out is exceeded, an emergency stop occurs and the system waits for the preparation sequence to start.	
		If the set value is 0, no time-out occurs or no communi- cation stop can be detected.	
1911 (PR)	clock select	Select an operation cycle.	0: 6 MHz 1: 10 MHz
1926 (PR)	IP address	Set NC's IP address.	Set these according to connection environ- ment's network
1927 (PR)	Subnet mask	Set sub-net mask.	regulations.
1928 (PR)	Gateway address	Designate gateway IP address.	

#	Items	Details	Setting range (unit)
1929	Port number	Set the HMI connection port No.	0 to 65535
(PR)		(Set the default value 64758 unless particularly required.)	
1930	Speed 10M/auto	Set the communication rate.	0/1
(PR)		0: Fixed to "10Mbyte"	
		1: Recognized whether "10Mbyte" or "100Mbyte"	
		automatically and set.	
1931	IP address(2)	Set NC's IP address.	Set these according to
(PR)		Set for the card mounted on the 2nd channel when	connection environ-
		2-channel connection is used on the Ethernet	ment's network
		communication. (Note1)	regulations.
1932	Subnet mask(2)	Set sub-net mask.	
(PR)		Set for the card mounted on the 2nd channel when	
		2-channel connection is used on the Ethernet	
		communication. (Note1)	
1933	Port number(2)	Set the HMI connection port No.	0 to 65535
(PR)		(Set the default value 64758 unless particularly required.)	
		Set for the card mounted on the 2nd channel when	
		2-channel connection is used on the Ethernet	
		communication. (Note1)	
1934	Speed(2) 10M/auto	Set the communication rate.	0/1
(PR)		0: Fixed to "10Mbyte"	
		1: Recognized "10Mbyte" or "100Mbyte"	
		automatically and set.	
		Set for the card mounted on the 2nd channel when	
		2-channel connection is used on the Ethernet	
		communication. (Note1)	

(Note1) When two Ethernet cards are mounted, make sure not to use IP address on the same network IDs.

The cards are regarded as "same network IDs" when the area masked (validated) by "Subnet mask" parameter is the same as another.

#	Items	Details	Setting range (unit)
21025	SmpDelay	Set up a sampling time after an alarm occurs.	0 to 3000 (ms)
21028	ed_mess	Set up an edit type.	0/1
		0: Displays messages with state.	
		1: Displays operation message equivalent to M50.	
21029	NCname	Use this to display the NC unit name on the CE	8 or less
		terminal screen.	alphanumeric
			characters
21030	AlmHold (h)	Set the time to delete sampling data automatically after	0 to 9999 (h)
		an alarm occurs.	
		If 0 is set, the alarm will not be deleted automatically.	
21031	UnitMax	Set the number of connected control units when setting	0 to 15
		and displaying several NC control units with one	(Default value: 0)
		terminal using the multiple NC common display function.	
		Up to 15 NC control units can be connected.	
		The default value is "0", so if the setting is not	
		changed, it will be interpreted that 1 control unit is	
		connected.	
		(The setting values "0" and "1" are handled in the	
		same manner.)	
21032	UnitNum	Set the control unit's station No. when setting and	0 to 14
		displaying several NC control units with one terminal	(Default value: 0)
		using the multiple NC common display function.	
		"0" is the first station No. and "14" is the last station No.	
		Make sure that the stations are not set in duplicate.	
21033	KeyCtrlLmt	Acquisition of the key operation rights are limited.	0 to 2
		0: The key operation rights can be acquired from	
		another display unit on all screens.	
		1: The key operation rights cannot be acquired	
		while the Program screen is opened.	
		2: The key operation rights cannot be acquired	
		from another display unit on any screen.	
21034	ReMonDisp	The remote monitor tool displays are limited.	0 to 1
		0: The remote monitor tool displays are not limited.	
		1: Display information is not sent to the remote	
		monitor tool.	
		(Note) Avoid setting from the remote monitor tool. The	
		display will not appear as soon as this	
21040	SDrome	parameter is set.	0 to 7
∠1049	SPname	Designate the spindle No. selected for the G43.1	0 to 7
		modal in each part system.	
		0: 1st spindle 4: 4th spindle	
		1: 1st spindle 5: 5th spindle	
		2: 2nd spindle6: 6th spindle3: 3rd spindle7: 7th spindle	
		3: 3rd spindle 7: 7th spindle	

#		Items	Details	Setting range (unit)
21101		PLC axis rapid traverse mode acceleration/ deceleration type	Select the PLC axis rapid traverse mode acceleration/ deceleration type. (This is compatible from software version C0 and higher.) 0: Select constant time constant acceleration/ deceleration 1: Select constant inclination acceleration/ deceleration (Note) This parameter cannot be used when the	0/1
	add01 (bit1)	PLC axis cutting feed mode acceleration/ deceleration type /Peripheral axis (MC1K I/F) acceleration/ deceleration type	 (Note) This parameter cannot be used when the peripheral axes (MC1K I/F) is used. Select the PLC axis cutting feed mode acceleration/ deceleration type. (This is compatible from software version C0 and higher.) 0: Select constant time constant acceleration/ deceleration 1: Select constant inclination acceleration/ deceleration (Note) Select the peripheral axis (MC1K I/F) acceleration/deceleration type when the peripheral axes are used. (This is compatible from software version C0 and higher.) 	0/1
	add01 (bit2) add01 (bit3)	Circular command block overlap valid G31 automatic acceleration/ deceleration	Validates the block overlap at the circular command. (This is compatible from software version C1 and higher.) 0: Invalid 1: Valid Validates dry run, override and automatic acceleration/ deceleration for the G31 (skip) command. (This is compatible from software version C1 and higher.) 0: Invalid	0/1 0/1
	add01 (bit4) add01 (bit5)		1: Valid Reserved for system. Reserved for system.	0

#		Items	Details	Setting range (unit)
21102	add02 (bit0)	Servo parameter 100-point compliance	 0: The number of servo parameters is set to 64 points. 1: The number of servo parameters is set to 100 points when using the 100-point servo parameter compliant amplifier. (This is compatible from software version C1 and higher.) 	0/1
	add02 (bit1)	External search time-out valid	 0: Time-out check of the external search command (DDBS) is not performed. 1: Time-out is performed approx. 3 seconds after the external search command (DDBS) is issued. (This is compatible from software version C2 and higher.) 	0/1
	add02 (bit2)	RIO communi- cation interruption alarm invalid	 0: The alarm "RIO communication interrupted" will occur if the remote I/O unit is not mounted. 1: Any alarm will not occur evenif the remote I/O unit is not mounted. Set "1" if the remote I/O unit is not used though CC-Link, MELSECNET/10, etc. is used. (This is compatible from software version C3 and higher.) 	0/1
21103	add03 (bit0)		Reserved for system.	0
	. ,	Amp S/W automatic download valid (only C64T)	Specify whether to perform or not the automatic download of the amp software when the power is turned ON. 0: Disables download 1: Enables download (This is compatible from software version C4 and higher.)	0/1 (Standard:0)
21104	add04 (bit0)	Sampling mode selection	Select the sampling mode. (This is compatible from software version D0 and higher.) 0: Cycle monitor mode 1: NC alarm diagnosis mode When NC power is turned ON, cycle monitor mode is selected.	0/1

#	Items	Details	Setting range (unit)
21105	add05	Not used.	0
21106	add06		
21107	add07		
21108	add08		
21109	add09		
21110	add10		
21111	add11		
21112	add12		
21113	add13		
21114	add14		
21115	add15		
21116	add16		
21117	add17		
21118	add18		
21119	add19		
21120	add20		
21121	add21		
21122	add22		
21123	add23		
21124	add24		

6.1 Axis Specifications Parameters

After setting up the parameter (PR) listed in the table, turn off the NC power. To validate the parameter, turn on the power again.

#	Items		Details	Setting range
				(unit)
2001	rapid	Rapid traverse feedrate	Set up the rapid traverse feedrate for each axis. The maximum value to be set differs with mechanical systems.	1 to 1000000 (mm/min)
	clamp	Cutting feedrate for clamp function	Define the maximum cutting feedrate for each axis. Even if the feedrate in G01 exceeds this value, the clamp will be applied at this feedrate.	1 to 1000000 (mm/min)
2003 (PR)	smgst	Acceleration and deceler- ation modes	Specify acceleration and deceleration control modes. F E D C B A 9 8 7 6 5 4 3 2 1 0 Image: Control Contenter Contenter Conthe Control Control Control Control Control Con	Specify the modes in hexadecimal notation.

#	Items	Details	Setting range
			(unit)
		(Continued from the previous page)	
		Cutting feed acceleration and deceleration types	
		LC: Linear acceleration/deceleration	
		C1: Primary delay	
		C3: Exponential acceleration and linear	
		deceleration	
		(Note) Designate "F" with bits 4 to 7 for cutting feed	
		with acceleration/deceleration by software.	
		Note that the acceleration/deceleration by	
		software will not applied on such case as follows;	
		(1) AS for G01/G02/G03 command during	
		G61.1 modal, s-curve acceleration/	
		deceleration before interpolation is	
		applied to.	
		(2) Linear acceleration/deceleration is applied	
		to the cutting feed during synchronous	
		tapping.	
		<combination acceleration="" and="" deceleration<="" of="" td=""><td></td></combination>	
		patterns>	
		Primary delay	
		$R_{1} = 1$ (C1 = 1)	
		Speed	
		$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
		Step Exponential to linear $P2 = 1 (C2 = 1)$	
		Parameters in parentheses are for cutting $R1-R3=0$	
		feed. $(1-C3=0)$	
		R1 > R3 when both R1 and R3 contain 1.	
		<stroke end="" stop="" types=""></stroke>	
		Type OT2 OT3	
		Linear deceleration 0 0	
		Position loop step stop 1 0	
		Speed loop step stop 0 1	
		Position loop step stop 1 1	
		OT1 0 Deceleration by G0t1	
		1 Deceleration by 2 × G0t1	
		(Continued on the next page)	
		(

#		Items	Details	Setting range (unit)
			(Continued from the previous page)	
			Stroke end signal	
			Speed Got1 Got1 Got1 Got1 Got1 CT4 is uselind under the following cardidians (uslid for	
			OT1 is valid under the following conditions (valid for	
			dog type reference point return): Stop type: Linear deceleration	
			Acceleration mode: Exponential	
			Deceleration mode: Linear	
2004	G0tL	G0 time constant (linear)	Set up a linear control time constant for rapid traverse acceleration and deceleration. The time constant is validated when LR (rapid traverse feed with linear acceleration or deceleration) or F (acceleration or deceleration by software) is selected in acceleration or deceleration mode "#2003 smgst." Speed	1 to 4000 (ms)

#	I	ltems	Details	Setting range (unit)
# 2005	GOt1	G0 time constant (primary delay) Second-step time constant for acceleration and deceleration by software	Details Set up a primary-delay time constant for rapid traverse acceleration and deceleration. The time constant is validated when R1 (rapid traverse feed with primary delay) or R3 (exponential acceleration and linear deceleration) is selected in acceleration or deceleration mode "#2003 smgst." When acceleration or deceleration by software is selected, the second-step time constant is used. <rapid delay="" feed="" primary="" traverse="" with=""> Speed Speed CRapid traverse feed with exponential acceleration and linear deceleration> Speed Spee</rapid>	Setting range (unit) 1 to 5000 (ms)
			<acceleration by="" deceleration="" software=""></acceleration>	
			Speed Got1 GotL GotL GotL GotL GotL	
2006	G0t2		Not used.	0

#		ltems	Details	Setting range (unit)
2007	G1tL	G1 time constant (linear)	Set up a linear control time constant for cutting acceleration and deceleration. The time constant is validated when LC (cutting feed with linear acceleration and deceleration) or F (acceleration and deceleration by software) is selected in acceleration or deceleration mode "#2003 smgst." Speed	1 to 4000 (ms)
2008	G1t1	G1 time constant (primary delay) Second-step time constant for acceleration and deceleration by software	Set up the primary delay time constant for cutting acceleration and deceleration. The time constant is validated when C1 (cutting feed with the primary delay) or C3 (cutting feed with exponential acceleration and linear deceleration) is selected in acceleration or deceleration mode "#2003 smgst." When acceleration or deceleration by software is selected, the second stage time constant is used. <cutting delay="" feed="" primary="" with=""> Speed Cutting feed with exponential acceleration and linear deceleration> Speed Cutting feed with exponential acceleration and linear deceleration> Speed Cutting feed with exponential acceleration by software> Speed Speed Cutting feed with exponential acceleration by software> Speed Cutting feed with exponential acceleration by software> Speed Cutting feed with exponential acceleration/deceleration by software></cutting>	1 to 5000 (ms)
2009	G1t2		Not used.	

#		Items	Details	Setting range (unit)
2010	fwd_g	Feed forward gain	Set up a feed forward gain for pre-interpolation acceleration and deceleration. The larger the set value, the smaller the theoretical control error will be. However, if a mechanical vibration occurs, the set value must be reduced.	0 to 100 (%)
2011	G0back	G0 backlash	Set up the backlash compensation amount when the direction is reversed with the movement command in rapid traverse feed mode or in manual mode.	-9999 to 9999 (command unit / 2)
2012	G1back	G1 backlash	Set up the backlash compensation amount when the direction is reversed with the movement command in cutting mode.	-9999 to 9999 (command unit / 2)
2013 2014		Soft limit I – Soft limit I +	Set up a soft limit area with reference to the zero point of the basic mechanical coordinates. For the movable area of stored stroke limit 1, set the coordinate in the negative direction in #2013 and the coordinate in the positive direction in #2014. To narrow the available range in actual use, use the parameters #8204 OT- and #8205 OT+. (Note) When the same value (other than 0) is set in #2013 and #2014, this function is disabled. Basic machine coordinate OT-(X) Movable area OT-(X) OT-(Z)	±99999.999 (mm)
2015	t1m1-	Negative direction sensor of tool setter or TLM standard length	Set up a sensor position in the negative direction when using the tool setter. When the TLM is used, set up the distance of a tool replacement point (reference point) for measuring the tool length from the zero point to the measurement reference point (surface).	±99999.999 (mm)
2016	t1m1+	Positive direction sensor of tool setter	Set up the sensor position in the positive direction when using the tool setter.	±99999.999 (mm)

#		ltems	Details	Setting range (unit)
2017	tap_g	Axis servo	Set the position loop gain in the synchronous tap cycle.	0.25 to 200.00
		gain	The setting range is 0.25 to 200.00rad/s, in 0.25	(rad/s)
			increment units.	
			The standard setting is 10.	
2018	no_srv	Operation	Set when performing test operation without connecting	0/1
		with no servo	the drive amplifier and motor.	
		control	0: Specify normal operation.	
			1: Operation is possible even if units are not	
			connected as the drive system alarm will be	
			ignored.	
			This is for test operation during start up and is not used	
			normally.	
			If 1 is set during normal operation, errors will not be	
			detected even if they occur.	
2019	revnum	Retract steps	Set up the steps required for retracting to the reference	0 to 4
			point for each axis.	
			0: Does not execute retracting to the	
			reference point.	
			1 to 4: Sets up the steps required for retracting to	
			the reference point.	
2020	o_chkp	Spindle	Set up the distance from the second reference point to	0 to 99999.999
		orientation	the position for checking that the spindle orientation has	(mm)
		completion	completed during second reference point return. If the	
		check during	set value is 0, the above check is omitted.	
		second		
		reference		
		point return	• · · · · · · · · · · · · · · · · · · ·	
2021	out_f	Maximum	Set up the maximum speed outside the soft limit range.	0 to 1000000
		speed		
		outside soft		
0000	00001.1/	limit range		0/4
2022	G30SLX	Validate soft	Set up this function to disable a soft limit check during	0/1
		limit	the second to the fourth reference points return in both	
		(automatic	automatic and manual operation modes.	
		and manual)	0: Enables soft limit check.	
0000	o -frain		1: Disables soft limit check.	0 to 1000000
2023	ozfmin	Set up ATC	Set up the minimum speed outside the soft limit range	0 to 1000000
		speed lower limit	during the second to the fourth reference points return	
2024	0) (0) 5 7 7		in both automatic and manual operation modes.	0 to 00000 000
2024	synerr	Allowable	Set up the following for the master axis: the maximum	0 to 99999.999
		error	synchronization error that is allowed to check for	(mm)
			synchronization errors.	
			When 0 is set up, the error check is not carried out.	

6.2 Zero Point Return Parameters

After setting up the parameter (PR) listed in the table, turn off the NC power. To validate the parameter, turn on the power again.

#		Items	Details	Setting range (unit)
2025	G28rap	G28 rapid	Set up a rapid traverse feedrate for dog type reference	1 to 1000000
		traverse	point return command.	(mm/min)
		feedrate		
2026	G28crp	G28	Set up the speed of approach to the reference point in	1 to 60000
		approach	the reference point return command. This speed is	(mm/min)
		speed	attained after the system stops with deceleration by dog	
			detection.	
			(Note) The G28 approach speed unit is 10°/min only	
			when using the spindle/C-axis with the Z-phase	
			type encoder for the reference point return type	
			("#1226 aux10" bit3 = 1).	
			Note that this unit is applied to both micrometric	
			and sub-micrometric specifications.	
2027	G28sft	Reference	Set up the distance from the electrical zero-point	0 to 65535 (µm)
		point shift	detection position to the actual machine reference point	
		distance	during reference point return.	
2028	grmask	Grid mask	Set up a distance where the grid point is ignored when	0 to 65535 (µm)
		amount	near-point dog OFF signals are close to that grid point	Even for the
			during reference point return.	specifications in
				sub-micrometric
				system, set up the
				value in units of
				<i>μ</i> m.
			Near-point dog	
			Grid mask setup distance	
			The grid mask is valid by one grid.	
2029	grspc	Grid interval	Set up a detector grid interval.	-32767 to 999
2020	gropo		Generally, set up the value equal to the ball screw pitch.	(mm)
			However, if the detector grid interval is not equal to the	(((((()))))))))))))))))))))))))))))))))
			screw pitch when measured with a linear scale, set up	
			the detector grid interval.	
			To reduce the grid interval, use its divisors.	
			To use 0.001 mm as minimum setup units, set up the	
			negative value.	
			Example) Setup value	
			$1 \rightarrow 1.000 \text{ mm} (^{\circ})$	
			$-1 \rightarrow 0.001 \text{ mm }(^{\circ})$	
			Even when the specifications in sub-micrometrics are	
			used, 0.001 mm is specified for the minimum setup	
			units.	

#		Items	Details	Setting range (unit)
2030 (PR)	dir (–)	Reference point direction ()	Set which side of the near-point dog the reference point is at during reference point return. <for dog="" point="" reference="" return="" type=""> Direction in which zero point is established as viewed from the near-point dog Negative direction dir(-)=0 dir(-)=1</for>	0: Positive direction 1: Negative direction
2031	noref nochk	Axis without reference point Whether	Specify the axis that does not have a reference point. Before automatic operation starts, reference point return is not required. The absolute and incremental commands can be	 0: Normal controlled axis 1: Axis without reference point 0: Checks
2002	HOGHK	reference point return is completed not checked	executed even if dog type (or Z phase pulse system) reference point return is not completed. Specify whether to check that the reference point return is completed.	 0. Onecks reference point return completion. 1: Does not check reference point return completion.
2037 2038 2039 2040	G53ofs #2_rfp #3_rfp #4_rfp	Reference point #1 to #4	Set up the position of the first, second, third, and fourth reference points from the zero point of the basic mechanical coordinates.	

6.3 Absolute Position Parameters

#		tems	Details	Setting range (unit)
2049	type	Absolute	Specify the absolute position zero point alignment	0 to 9
(PR)		position	method.	
		detection	0: Not absolute position detection	
		method	1: Stopper method (push onto mechanical stopper)	
			2: Marked point alignment method (align with	
			marked point)	
			3: Dog-type (align with dog and proximity switch)	
			9: Simple absolute position detection	
			(Not absolute position detection, but the position	
			when the power is turned off is registered.)	
			Automatic initial setting is valid only when the stopper	
			method is selected.	
2050	absdir	Base point of	Set the direction of the grid point just before the marked	
		Z direction	point (of the detector) when using marked point	direction
			alignment method.	1: Negative
				direction
2051	check	Check	Set the tolerable range for the movement amount	0 to 99999.999
			(deviation amount) when the power is turned off.	(mm)
			0: Not checked	
			1 to 99999.999mm: If the difference of the position	
			when the power is turned off and turned on	
			again is larger than this value, an alarm will be	
0050	ah a #00	\	output.	0.44 05505
2052	absg28	Width	Specify the position comparison when executing G28	0 to 65535
		compared by G28	or G30.	(0.5 µm)
		620	The comparison results set the tolerable range. 0: No comparison	
			1 to 65535 (0.5 μm units):	
			If the results of the comparison of the value read	
			in from the detector and the position in the	
			control unit exceed this set value, an alarm will	
			be output, and the machine will stop.	
			The standard value is 100.	
2053	absm02	Width	Specify the position comparison when executing M02	0 to 65535 (µm)
		compared by	or M30.	с ю сосос (р)
		M02	The comparison results set the tolerable range.	
			0: Not compared	
			1 to 65535 (0.5 μm units):	
			If the results of the comparison of the value read	
			in from the detector and the position in the	
			control unit exceed this set value, an alarm will	
			be output, and the machine will stop.	
			The standard value is 100.	

#		Items	Details	Setting range (unit)
2054	clpush	Current limit (%)	Set up the current limit value for the initial setting when detecting an absolute position with a dog-less system. The setup value is the ratio of the current limit value to the rated value.	0 to 100 (%)
2055	pushf	Push speed	Set the feedrate for the automatic initial setting during stopper method.	1 to 999 (mm/min)
2056	aproch	Approach	Set the approach distance for the automatic initial setting in the stopper method. Approach distance: After pushing onto the machine stopper once, the tool returns this distance, and then pushes again. When set to 0, the reference point coordinates set in "#2037 G53ofs" will be used as the approach start position.	0 to 999.999 (mm)
2057	nrefp	Near zero point +	Set the width where the near-reference-point signal is output. (Positive direction width) When set to 0, the width is equivalent to the grid width setting.	0 to 32.767 (mm)
2058	nrefn	Near zero point –	Set the width where the near-reference-point signal is output. (Negative direction width) When set to 0, the width is equivalent to the grid width setting.	0 to 32.767 (mm)
2059	zerbas	Select zero point parameter and reference point	 Specify the position to be the zero point coordinate during absolute position initial setting. 0: Machine stopper position in machine stopper method. Marked point in marked point alignment method. 1: On the grid point just before machine stopper in machine stopper. On the grid point just before the marked point in marked point alignment method. 	0/1

6.4 Axis Specifications Parameters 2

#		ltems	Details	Setting range (unit)
2061	OT_1B-	Soft limit IB-	Set up the coordinates of the lower limit of the inhibited	±99999.999 (mm)
			area of stored stroke limit IB.	
			Specify a value in the basic machine coordinates	
			system. If the same value (other than 0) with the same	
			sign as that of "#2062 OT_IB-" is specified, the stored	
			stroke limit IB function is disabled.	
2062	OT_1B+	Soft limit IB+	Set up the coordinates of the upper limit of the inhibited	±99999.999 (mm)
			area of stored stroke limit IB.	
			Specify a value in the basic machine coordinates	
			system.	
2063	OT_1B	Soft limit IB	Select OT_IB or OT_IC in which OT_IB+/- is used in	0/1/2
	type	type	stored stroke limit I.	
			0: Soft limit IB valid	
			1: Soft limit IB and IC invalid	
			2: Soft limit IC valid	
2068	G0fwdg	G00 feed	Specify the feed forward gain applicable to	0 to 200 (%)
		forward gain	acceleration/deceleration before G00 interpolation.	
			The greater the set value, the shorter the positioning	
			time during in-position checking.	
			If machine vibration occurs, decrease the set value.	
2069	Rcoeff	Axis arc	The amount of arc radius error correction can be	-100.0 to +100.0
		radius error	increased or decreased between -100% to +100% for	(%)
		correction	each axis.	
		efficient		
2070	div_RT	Rotational	Specify the number of divisions of one turn of the	0 to 999
(PR)		axis division	rotational axis for purpose of control.	
		count	(Example) When 36 is set, one turn is supposed to	
			be 36.000.	
			(Note) When 0 is set, the normal rotational axis	
			(360.000 degrees for one turn) is assumed.	
			* If this parameter is changed when the absolute	
			position detection specification is used, absolute	
			position data is lost. Initialization must be performed	
			again.	

#		Items	Details	Setting range (unit)
2073	zrn_dog	Origin dog Random assignment device	 When it is desired to assign the origin dog signal to a position other than the fixed device, specify the input device in this parameter. (Note1) This parameter is valid when 1 is set in #1226 aux10 bit 5. (Note2) When this parameter is valid, do not set the same device number. If the same device number exists, an emergency stop occurs. Note that the device number is not checked for an axis to which a signal that ignores the fixed signal is input. (Note3) The setting range of this parameter has been expanded on the software Ver.D0 and later. 	000 to 3FF (HEX)
2074	H/W_OT+	H/W OT+ Random assignment device	 When it is desired to assign the OT (+) g signal to a position other than the fixed device, specify the input device in this parameter. (Note1) This parameter is valid when 1 is set in #1226 aux10 bit 5. (Note2) When this parameter is valid, do not set the same device number. If the same device number exists, an emergency stop occurs. Note that the device number is not checked for an axis to which a signal that ignores the fixed signal is input. (Note3) The setting range of this parameter has been expanded on the software Ver.D0 and later. 	000 to 3FF (HEX)
2075	H/W_OT-	H/W OT- Random assignment device	 When it is desired to assign the OT (-) g signal to a position other than the fixed device, specify the input device in this parameter. (Note1) This parameter is valid when 1 is set in #1226 aux10 bit 5. (Note2) When this parameter is valid, do not set the same device number. If the same device number exists, an emergency stop occurs. Note that the device number is not checked for an axis to which a signal that ignores the fixed signal is input. (Note3) The setting range of this parameter has been expanded on the software Ver.D0 and later. 	000 to 3FF (HEX)
2076	index_x	Index table indexing axis	 Specify the index table indexing axis. 0: Normal axis 1: Index table indexing axis (Note) This parameter is valid only for the NC axis. The parameter is invalid if specified for the PLC axis. 	0/1

#		Items	Details	Setting range (unit)
22011	bscmp-	Offset	Specify the coordinates on the machine basic	±99999.999
		compensa-	coordinates where the compensation is carried out by	
		tion position	the offset amount.	
22012	bscmp+	Max.	Specify the coordinates on the machine basic	±99999.999
		compensa-	coordinates where the compensation is carried out by	
		tion position	the max. offset amount.	

(Note) The positional relation of either #22011 and #22012 can be on the minus side.

7. Servo Parameters

The parameters can be changed from any screen.

The valid servo parameters will differ according to the motor type. The setting values and meanings may also differ. Follow the correspondence table given below, and set the correct parameters. Refer to each Instruction Manual or the following manuals for details on each motor.

MELDAS AC Servo/ Spindle MDS-A Series MDS-B Series Specification Manual BNP-B3759 MELDAS AC Servo MDS-B-SVJ2 Series Specification and Instruction ManualBNP-B3937 MELDAS AC Servo/ Spindle MDS-C1 Series Specification ManualBNP-C3000

		Co	rresponding mo	del
	Parameter	MDS-B-SVJ2	MDS-C1-Vx (High-gain) (MDS-B-Vx4)	MDS-C1-Vx (Standard) (MDS-B-Vx)
SV001	Motor side gear ratio	0	0	0
SV002	Machine side gear ratio	0	0	0
SV003	Position loop gain 1	0	0	0
SV004	Position loop gain 2	0	0	0
SV005	Speed loop gain 1	0	0	0
SV006	Speed loop gain 2	-	0	0
SV007	Speed loop delay compensation	_	0	0
SV008	Speed loop lead compensation	0	0	0
SV009	Current loop q axis lead compensation	0	0	0
SV010	Current loop d axis lead compensation	0	0	0
SV011	Current loop q axis gain	0	0	0
SV012	Current loop d axis gain	0	0	0
SV013	Current limit value	0	0	0
SV014	Current limit value in special control	0	0	0
SV015	Acceleration rate feed forward gain	0	0	0
SV016	Lost motion compensation 1	0	0	0
SV017	Servo specification selection	0	0	0
SV018	Ball screw pitch	0	0	0
SV019	Position detector resolution	0	0	0
SV020	Speed detector resolution	0	0	0
SV021	Overload detection time constant	0	0	0
SV022	Overload detection level	0	0	0
SV023	Excessive error detection width during servo ON	0	0	0
SV024	In-position detection width	0	0	0
SV025	Motor/Detector type	0	0	0
SV026	Excessive error detection width during servo OFF	0	0	0
SV027	Servo function selection 1	0	0	0
SV028	Linear motor magnetic pole shift length	-	-	
SV029	Speed at the change of speed loop gain	_	0	0
SV030	Voltage dead time compensation	-/0	0/0	0/0
SV031	Overshooting compensation 1	0	0	0
SV032	Torque offset	0	0	0

		Co	rresponding mo	del
	Parameter	MDS-B-SVJ2	MDS-C1-Vx (High-gain) (MDS-B-Vx4)	MDS-C1-Vx (Standard) (MDS-B-Vx)
SV033	Servo function selection 2	0	0	0
SV034	Servo function selection 3	0	0	0
SV035	Servo function selection 4	0	0	0
SV036	Regenerative resistor type	0	0	0
SV037	Load inertia scale	0	0	0
SV038	Notch filter frequency 1	-	0	0
SV039	Lost motion compensation timing	_	0	0
SV040	Non-sensitive band in feed forward control	-/0	0/0	0/0
SV041	Lost motion compensation 2	0	0	0
SV042	Overshooting compensation 2	0	0	0
SV043	Disturbance observer filter frequency	0	0	0
SV044	Disturbance observer gain	0	0	0
SV045	Frictional torque	_/ O	0/0	0/0
SV046	Notch filter frequency 2	_	0	_
SV047	Inductive voltage compensation gain	0	0	0
SV048	Vertical axis drop prevention time	0	0	0
SV049	Position loop gain 1 in spindle synchronous control	0	0	0
SV050	Position loop gain 2 in spindle synchronous control	0	0	0
SV051	Dual feedback control time constant	_	0	0
SV052	Dual feedback control non-sensitive band	_	0	0
SV053	Excessive error detection width in special control	0	0	0
SV054	Overrun detection width in closed loop control	_/_	0/0	0/0
SV055	Max. gate off delay time after emergency stop	_	0	0
SV056	Deceleration time constant at emergency stop	0	0	0
SV057	SHG control gain	0	0	0
SV058	SHG control gain in spindle synchronous control	0	0	0
SV059	Collision detection torque estimating gain	0	0	0
SV060	Collision detection level	0	0	0
SV061	D/A output channel 1 data No.	0	0	0
SV062	D/A output channel 2 data No.	0	0	0
SV063	D/A output channel 1 output scale	0	0	0
SV064	D/A output channel 2 output scale	0	0	0
SV065	Tool end compensation spring constant	_	0	_

7.1 MDS-B-SVJ2

(1) Details for servo parameters

For parameters marked with a (PR) in the table, turn the NC power OFF after setting. After the power is turned ON again, the parameter is validated.

/ In the explanation on bits, set all bits not used, including blank bits, to "0".

No.		Items	Details	Setting range
2201 (PR)	SV001 PC1	Motor side gear ratio	Set the motor side and machine side gear ratio. For the rotary axis, set the total deceleration (acceleration) ratio.	1 to 32767
2202 (PR)	SV002 PC2	Machine side gear ratio	Even if the gear ratio is within the setting range, the electronic gears may overflow and cause an alarm.	1 to 32767
2203	SV003 PGN1	Position loop gain 1	Set the position loop gain. The standard setting is "33". The higher the setting value is, the more precisely the command can be followed and the shorter the positioning time gets, however, note that a bigger shock is applied to the machine during acceleration/deceleration. When using the SHG control, also set SV004 (PGN2) and SV057 (SHGC).	1 to 200 (rad/s)
2204	SV004 PGN2	Position loop gain 2	When using the SHG control, also set SV003 (PGN1) and SV057 (SHGC). When not using the SHG control, set to "0".	0 to 999 (rad/s)
2205	SV005 VGN1	Speed loop gain	Set the speed loop gain. Set this according to the load inertia size. The higher the setting value is, the more accurate the control will be, however, vibration tends to occur. If vibration occurs, adjust by lowering by 20 to 30%. The value should be determined to be 70 to 80% of the value at the time when the vibration stops.	1 to 999
2206			Not used. Set to "0".	0
2207			Not used. Set to "0".	0
2208	SV008 VIA	Speed loop lead compensation	Set the gain of the speed loop integration control. The standard setting is "1364". During the SHG control, the standard setting is "1900". Adjust the value by increasing/decreasing it by about 100 at a time. Raise this value to improve contour tracking precision in high-speed cutting. Lower this value when the position droop vibrates (10 to 20Hz).	1 to 9999
2209	SV009 IQA	Current loop q axis lead compensation	Set the gain of current loop. As this setting is determined by the motor's electrical characteristics, the setting is fixed for each type of	1 to 20480
2210	SV010 IDA	Current loop d axis lead compensation	motor. Set the standard values for all the parameters depending on each motor type.	1 to 20480
2211	SV011 IQG	Current loop q axis gain		1 to 2560
2212	SV012 IDG	Current loop d axis gain		1 to 2560

No.		Items	Details	Setting range
2213	SV013 ILMT	Current limit value	Set the normal current (torque) limit value. (Limit values for both + and - direction.) When the value is "500" (a standard setting), the maximum torque is determined by the specification of the motor.	0 to 500 (Stall [rated] current %)
2214	SV014 ILMTsp	Current limit value in special control	Set the current (torque) limit value in a special control (initial absolute position setting, stopper control, etc). (Limit values for both of the + and - directions.) Set to "500" when not using.	0 to 500 (Stall [rated] current %)
2215	SV015 FFC	Acceleration rate feed forward gain	When a relative error in the synchronous control is large, apply this parameter to the axis that is delaying. The standard setting value is "0". For the SHG control, set to "100". To adjust a relative error in acceleration/ deceleration, increase the value by 50 to 100 at a time.	0 to 999 (%)
2216	SV016 LMC1	Lost motion compensation 1	Set this when the protrusion (that occurs due to the non-sensitive band by friction, torsion, backlash, etc) at quadrant change is too large. This compensates the torque at quadrant change. This is valid only when the lost motion compensation (SV027 (SSF1/lmc)) is selected.	
			Type 1: When SV027 (SSF1)/ bit9, 8 (Imc)=01 Set the compensation amount based on the motor torque before the quadrant change. The standard setting is "100". Setting to "0" means the compensation amount is zero. Normally, use Type 2.	-1 to 200 (%)
			Type 2: When SV027 (SSF1)/ bit9, 8 (Imc)=10 Set the compensation amount based on the stall (rated) current of the motor. The standard setting is double of the friction torque. Setting to "0" means the compensation amount is zero.	-1 to 100 (Stall [rated] current %)
			When you wish different compensation amount depending on the direction When SV041 (LMC2) is "0", compensate with the value of SV016 (LMC1) in both of the + and -directions. If you wish to change the compensation amount	
			depending on the command direction, set this and SV041 (LMC2). (SV016: + direction, SV041: - direction. However, the directions may be opposite depending on other settings.) When "-1" is set, the compensation won't be performed in the direction of the command.	

No.		Items				Deta	ails			Setti	ng range
2217	SV017			F	E	D	С	В	А	9	8
(PR)	SPEC	specification									
		selection		7	6	5	4	3	2	1	0
				abs		vdir		mc			dmk
				bit			n "O" is se	et N	leaning v	when "1	" is set
			0	dmk		ation cont tandard)	trol stop	Dyı	namic bra	ke stop	
			1								
			2	mc	Contact	or control	output inv	valid Co	ntactor co	ntrol out	nut valid
			4	mo	Contact	01 001101	ouputin				put valia
						to HA33			053N to H		
			5	vdir	Detecto standar		on positio		tector inst degrees (position
			6								
			7	abs	Increme	ental contr	01	ADS	solute pos	sition cor	ntrol
			9								
			Α								
			B								
			C D								
			E								
			F								
			(Note	e) Set t	to "0" for	bits with r	no particul	ar descr	iption.	_	
2218 (PR)	SV018 PIT	Ball screw pitch	Set t	he ball	screw pi	tch. Set t	to "360" fo	or the rota	ary axis.	1 to 32 (mm/re	
2219 (PR)	SV019 RNG1	Position detector				s, set the r tor detecto	number of or.	ⁱ pulses p	per one	8 to 10 (kp/rev	
		resolution			N a t a m m			Settir	ng value		
					wotor m	odel nam	le	SV01	9 SV020		
2220	SV020	Speed	HC ³	*-E42//	A42/A47,	HC*R-E4	12/A42/A4	7			
(PR)	RNG2	detector	HA'	N-E42	2/A42			100	100		
		resolution	HC	*-E33//	433, HC*	R-E33/A3	33				
			HA'	N-E33	8/A33			25	25		
				SF, H				16	16		
			HA-FF, HC-MF 8 8					8			

No.	I	tems	Details	Setting range
2221	SV021 OLT	Overload detection time constant	Set the detection time constant of Overload 1 (Alarm 50). Set to "60" as a standard. (For machine tool builder adjustment.)	1 to 300 (s)
2222	SV022 OLL	Overload detection level	Set the current detection level of Overload 1 (Alarm 50) in respect to the stall (rated) current. Set to "150" as a standard. (For machine tool builder adjustment.)	50 to 180 (Stall [rated] current %)
2223	SV023 OD1	Excessive error detection width during servo ON	Set the excessive error detection width when servo ON. <standard setting="" value=""> Rapid traverse rate $OD1=OD2=\frac{(mm/min)}{60*PGN1}/2 (mm)$ When "0" is set, the excessive error detection will not be performed.</standard>	0 to 32767 (mm)
2224	SV024 INP	In-position detection width	Set the in-position detection width. Set the accuracy required for the machine. The lower the setting is, the higher the positioning accuracy gets, however, the cycle time (setting time) becomes longer. The standard setting is "50".	0 to 32767 (μm)

No.		Items			Detai	ils						S	etting	range
2225	SV025	Motor/	F	Е	D	(С	E	5		A	9		8
(PR)	MTYP	Detector			pen						e	ent		
		type	7	6	5		4	3			2	1		0
				<u> </u>	0			ntyp			<u> </u>			Ū
								71						
			bit	1				Explai	a a ti	<u></u>				
				Sot the	e motor type	<u> </u>		схріаі	iati	on				
				Set-					1					
			1	ting	0x	1x	2x	3x 4)	(5x	6x		7x	8	X
			2	x0	HA40N						НА	-FF43	HA	43N
			3 mtyp		HA80N					1		-FF63		
			4	x2	HA100N	ō	å	d						03N
			5	x3	HA200N	0								
			6	x4										
			7	x5										
				x6										
				x7			ļ							
				x8										
				x9 xA									HA	221
				xA										9211
				xC					-		ΗΔ-	FF05	3 HAO	53N
				xD					-			-FF13		
				xE								-FF23		
				xF			İ			1	L	-FF33		
				Set- ting	9x	Ax		Bx		Сх		Dx	Ex	Fx
				x0	HC-MF43			C52 or C-SF52						
				x1	HC-MF73		HC	2102 o -SF10	r H	C10	3 or		103R -RF10	
				x2			HC	2152 o -SF15	r H	C15	3 or	HC	153R -RF15	
				x3			HC	202 o -SF20	r H	C20	3 or	HC	203R -RF20	or
				x4				352 o -SF35						
				x5		İ		2.00	-					
				x6										
				x7)								
				x8		ļ								
				x9		ļ			ļ		[
				xA										
				xB		ļ			ļ					
					HC-MF053	1								
		1	1 1	xD	HC-MF13	ļ								
				√⊏		1								
				xE	HC-MF23									
				xE xF	HC-MF23			/T~					0.00/	page)

No.		Items				Deta	ails			Setti	ng range
			(Cor	ntinue	d from the	previous	page)				
				bit			E	xplana	ation		
			8 9 A	ent	Set to "2	speed de 2".	tector typ	e.			
			B C D		Set to "2	position c	letector t	ype.			
			E	pen							
2226	SV026 OD2	Excessive error detection width during servo OFF	For t SV02 Whe	he sta 23 (O	andard set D1). is set, the	ting, refe	r to the e	xplana	tion of will not be	0 to 32 (mm)	767
2227	SV027	Servo	•	F	E	D	С	В	Α	9	8
	SSF1	function		aflt	zrn2				OVS	In	nc
		selection 1		7	6	5	4	3	2	1	0
					Ű		ct				zup
									1		
				bit	Mean	ing wher	n "O" is s	et	Meaning	when "1	" is set
									Vertical axi		
			0	zup	Vertical a	xis lift-up	control s	stop	start	o op o	
			1								
			2								
			3		0.11						
			4	vfet	Set the jit binary.	ter comp	ensation	No. of	compensati	ion pulse	s with a
			5	VICL		litter com	pensatio	n invali	id		
			Ŭ			litter com	•				
						litter com					
				•		litter com					
			6								
			7		0.11				0.404.0.41		0.00.00
			8	Imo		ompensa	tion amoi	unt with	n SV016 (LN	viC1) and	3 SV041
			9		(LMC2).	.ost motio	on comp	neatio	n ston		
			3	J		_ost motio					
						ost motio					
				•		Setting pr					
			Α			ompensa	tion amo	unt with	n SV031 (O	VS1) and	SV042
				ovs	(OVS2).		1:00 0000		ion oton		
			В	J		Dvershoo			ion stop		
									ion type 1		
						Setting pr					
			С			<u> </u>					
			D								
			E		Set to "1"				A 1		
			F	•	Adoptive				Adoptive fi	Iter starts	6
			(Note	e) Set	to "0" for b	oits with r	no particu	ılar des	scription.		

No.	I	tems	Details	Setting range
2228	SV028		Not used. Set to "0".	0
2229	SV029		Not used. Set to "0".	0
2230	SV030 IVC	Voltage dead time compensa- tion	When 100% is set, the voltage equivalent to the logical non-energized time will be compensated. Adjust in increments of 10% from the default value 100%. If increased too much, vibration or vibration noise may be generated. When not using, set to "0".	0 to 200 (%)
2231	SV031 OVS1	Overshoot- ing compensa- tion 1	Set this if overshooting occurs during positioning. This compensates the motor torque during positioning. This is valid only when the overshooting compensation SV027 (SSF1/ovs) is selected.	-1 to 100 (Stall [rated] current %)
			Type 1: When SV027 (SSF1)/ bit11, 10 (ovs)=01 Set the compensation amount based on the motor's stall (rated) current. Increase by 1% and determine the amount that overshooting doesn't occur. In Type 1, compensation during the feed forward control during circular cutting won't be performed.	
			Type 2: When SV027 (SSF1)/ bit11, 10 (ovs)=10 Use this if you perform the overshooting compensation during the feed forward control during circular cutting. The setting method is the same in Type 1.	
			When you wish different compensation amount depending on the direction When SV042 (OVS2) is "0", compensate with the value of SV031 (OVS1) in both of the + and -directions. If you wish to change the compensation amount depending on the command direction, set this and SV042 (OVS2). (SV031: + direction, SV042: - direction. However, the directions may be opposite depending on other settings.) When "-1" is set, the compensation won't be performed in the direction of the command.	
2232	SV032 TOF	Torque offset	Set the unbalance torque of vertical axis and inclined axis.	-100 to 100 (Stall [rated] current %)

7. Servo Parameters 7.1 MDS-B-SVJ2

No.		Items				Deta	ails			Sett	ing range
2233	SV033	Servo		F	Е	D	С	В	А	9	8
	SSF2	function							afs		
		selection 2		7	6	5	4	3	2	1	0
						fh	z2		nfd		
					ſ						
				bit			n "0" is s		Meaning w		l" is set
			0			•		•	V038: FHz1	,	
			1				•	-	ne filter sha		
			2	nfd	Value	0	2 4	6	8 A	С	E
			3		Depth	Infntly	18.1 -12	2.0 -8.5	-6.0 -4.1	-2.5	-1.2
					(dB) Deep←	deep				<u>د</u>	Shallow
			1		Set the or	paration f	requency	of Noter	filtor 2	7	Shallow
			4	fhz2	00: No op		01:22		10:1125Hz	1	1:750Hz
			6				01122				
			7								
			8		Set the vi	bration s	ensitivity	of the ad	aptive filter.	If the	filter depth
			9 A	afs					or more) a		e vibration
				ais	cannot be	e sufficier	ntly elimin	ated, rais	se the value	Э.	
			В								
			С								
			D								
			E								
			F								
			(Not	e) Set	to "0" for	bits with	no particu	ılar desci	ription.		

No.		Items				Deta	ails			Sett	ing range				
2234	SV034	Servo	_	F	E	D	С	В	А	9	8				
	SSF3	function													
		selection 3		7	6	5	4	3	2	1	0				
				daf2	daf1	dac2	dac1		m	on					
			<u> </u>												
				bit		ning when			Meaning						
			0		NC ser	vo monitor l	MAX curr	ent disp	olay data ci	hangeov	er				
			1		ting		(current			(current					
			2	mon	0	Max. curr value whe turned ON	en power		Max. curre value for c						
			3		1	Max. curr	ent comn		Max. curre		lue for				
				I	2	Max. curr	ent FB va	alue	Max. curre one secon	ent FB va	llue for				
					3	Load iner	tia rate (%	6)	-						
					4	Adaptive frequency	filter oper		Adaptive filter operation gain (%)						
						5	PN bus vo)	Regenerat frequency number of	monitor	(The			
					6	Estimated for one se			Max. curre	lue for					
					7	Estimated for one se	d max. to	que	Max. distu for two see	irbance t					
										8 to F	Setting pr		/		
				dac1		put ch.1 ov			D/A output						
			5 6	dac2 daf1		put ch.2 ov put ch.1 no			D/A output D/A output						
			7	daf2		put ch.2 no			D/A output						
				duiz	Director		meer		<u>on courput</u>		lootting				
			8 9												
			Α												
			B												
			C												
			D E												
			F												
			(No	te) Se	t to "0" fo	or bits with r	no particu	ılar des	cription.						

No.		Items				Deta	ails			Sett	ing range
2235	SV035	Servo		F	Е	D	С	В	А	9	8
	SSF4	function		cl2n	1	clG1					
		selection 4	-	7	6	5	4	3	2	1	0
				bit	Meani	ng when '	"0" is set	t N	leaning	when "1	" is set
			E F	clG1 cl2n	Collision of Set the co The G1 co When clG won't fund	detection r ollision det ollision det i1=0, the c ction. detection r	nethod 1 ection lev tection de collision d method 2	vel during vel=SV06 etection i Colli inva	g cutting f 50*clG1. method 1 ision dete lid	feed (G1)	utting feed

No.		Items				Deta	ails			Setti	ng range		
2236	SV036	Regenera-		F	Е	D	С	В	А	9	8		
(PR)	PTYP	tive resistor			an	η			rty	ур			
		type		7	6	5	4	3	2	1	0		
					em	gx							
					ı — — — — — — — — — — — — — — — — — — —						1		
				bit	A			Explanati	ion				
			0		Always s		(0000) .						
			2										
			3										
			4						Inction.	Setting is	prohibited		
						es with n	o descript	tion.)					
			5	emgx	Set- ting			Explar	nation				
			6		0	Externa	al emerge	ncv stop	invalid				
			7		4		al emerge						
				-									
			8	Set the regenerative resistor type.									
			9		Set- ting			Explar	nation				
				rtyp	A		Drive u	nit standa	ard built-ii	n resistor	(SVJ2-0	1	
					0		have a b		sistor)				
			В		1		prohibite	d					
					2	MR-RB	032 12 or GZ	76200\\/?	ROUHWK				
							32 or GZ			3 units			
					4	connec	ted in par	allel					
					5		30 or GZ		90HMK: 3	3 units			
							ted in par 50 or GZ			2 unite			
					6		ted in par		301 IIVIN	5 units			
					7 to F		prohibite						
				1									
			C		Always s	set to "0((0000)".						
			D E F	amp									
			F										
			L		1								

No.		Items	Details	Setting range
2237	SV037 JL	Load inertia scale	Set "the motor inertia + motor axis conversion load inertia" in respect to the motor inertia. $SV037 (JL) = \frac{JI+Jm}{Jm} *100$ Jm: Motor inertia JI: Motor axis conversion load inertia	0 to 5000 (%)
2238	SV038 FHz1	Notch filter frequency 1	Set the vibration frequency to suppress if machine vibration occurs. (Valid at 72 or more) When not using, set to "0".	0 to 3000 (Hz)
2239	SV039 LMCD	Lost motion compensation timing	Set this when the lost motion compensation timing doest not match. Adjust by increasing the value by 10 at a time.	0 to 2000 (ms)
2240	SV040 LMCT	Non-sensitive band in feed forward control	Set the non-sensitive bad of the lost motion compensation and overshooting compensation during the feed forward control. When "0" is set, the actual value that will be set is 2µm. Adjust by increasing by 1µm.	0 to 100 (μm)
2241	SV041 LMC2	Lost motion compensation 2	Set this with SV016 (LMC1) only when you wish to set the lost motion compensation amount to be different depending on the command directions. Set to "0" as a standard.	-1 to 200 (Stall [rated] current %)
2242	SV042 OVS2	Overshooting compensation 2	Set this with SV031 (OVS1) only when you wish to set the overshooting compensation amount to be different depending on the command directions. Set to "0" as a standard.	-1 to 100 (Stall [rated] current %)
2243	SV043 OBS1	Disturbance observer filter frequency	Set the disturbance observer filter band. The standard setting is "300". Lower the setting by 50 at a time if vibration occurs. To use the disturbance observer, also set SV037 (JL) and SV044 (OBS2). When not using, set to "0".	0 to 1000 (rad/s)
2244	SV044 OBS2	Disturbance observer gain	Set the disturbance observer gain. The standard setting is "100" to "300". To use the disturbance observer, also set SV037 (JL) and SV043 (OBS1). When not using, set to "0".	0 to 1000 (%)
2245	SV045 TRUB	Frictional torque	Set the frictional torque when using the collision detection function.	0 to 100 (Stall [rated] current %)
2246	SV046		Not used. Set to "0".	0
2247	SV047 EC	Inductive voltage compensation gain	Set the inductive voltage compensation gain. Set to "100" as a standard. If the current FB peak exceeds the current command peak, lower the gain.	0 to 200 (%)
2248	SV048 EMGrt	Vertical axis drop prevention time	Input a length of time to prevent the vertical axis from dropping by delaying Ready OFF until the brake works when the emergency stop occurs. Increase the setting by 100ms at a time and set the value where the axis does not drop.	0 to 2000 (ms)

No.	lt	tems	Details	Setting range		
2249	SV049 PGN1sp	Position loop gain 1 in spindle synchronous control	Set the position loop gain during the spindle synchronous control (synchronous tapping, synchronous control with spindle/C axis). Set the same value as the value of the spindle parameter, position loop gain in synchronous control. When performing the SHG control, set this with SV050 (PGN2sp) and SV058 (SHGCsp).	1 to 200 (rad/s)		
2250	PGN2sp	Position loop gain 2 in spindle synchronous control	Set this with SV049 (PGN1sp) and SV058 (SHGCsp) if you wish to perform the SHG control in the spindle synchronous control (synchronous tapping, synchronous control with spindle/C axis). When not performing the SHG control, set to "0".	0 to 999 (rad/s)		
2251	SV051		Not used. Set to "0".	0		
2252	SV052		Not used. Set to "0".	0		
2253	SV053 OD3	Excessive error detection width in special control	Set the excessive error detection width when servo ON in a special control (initial absolute position setting, stopper control, etc.). If "0" is set, excessive error detection won't be performed when servo ON during a special control.	0 to 32767 (mm)		
2254	SV054		Not used. Set to "0".	0		
2255	SV055		Not used. Set to "0".	0		
2256	SV056 EMGt	Deceleration time constant at emergency stop	Set the time constant used for the deceleration control at emergency stop. Set a length of time that takes from rapid traverse rate (rapid) to stopping. Normally, set the same value as the rapid traverse acceleration/deceleration time constant.	0 to 5000 (ms)		
2257	SV057 SHGC	SHG control gain	When performing the SHG control, set this with S003 (PGN1) and SV004 (PGN2). When not performing the SHG control, set to "0".	0 to 999 (rad/s)		
2258	SV058 SHGCsp	SHG control gain in spindle synchronous control	Set this with SV049 (PGN1sp) and SV050 (PGN2sp) if you wish to perform the SHG control in the spindle synchronous control (synchronous tapping, synchronous control with spindle/C axis). When not performing the SHG control, set to "0".			
2259	SV059 TCNV	Collision detection torque estimating gain	To use the collision detection function, set the torque estimating gain. In the case of MDS-B-SVJ2, the value is the same as the load inertia ratio that includes the motor inertia. (=SV037:JL) If acceleration/deceleration is performed after setting SV034.mon=3 and SV060=0, the load inertia ratio will be displayed on the NC monitor screen.	0 to 5000 (%)		
2260	SV060 TLMT	Collision detection level	When using the collision detection function, set the collision detection level during the G0 feeding. If "0" is set, none of the collision detection function will work.	0 to 200 (Stall [rated] current %)		

No.	lt	ems	Details	Setting range
2261	SV061 DA1NO	D/A output channel 1 data No.	Input the data number you wish to output to D/A output channel.	0 to 102
2262	SV062 DA2NO	D/A output channel 2 data No.		
2263	SV063 DA1MPY	D/A output channel 1 output scale	When "0" is set, output is done with the standard output unit. Set other than "0" when you wish to change the unit.	-32768 to 32767
2264	SV064 DA2MPY	D/A output channel 2 output scale	Set the scale with a 1/256 unit. When "256" is set, the output unit will be the same as the standard output unit.	(Unit: 1/256)
2265	SV065		Not used. Set to "0".	0

(2) Initial setting value

(a) HC**/HC**R series

N	lotor	HC 52	HC 102*	HC 102	HC 152*	HC 152	HC 202*	HC 202	HC 352*
	ve unit pacity	06	07	10	10	20	10	20	20
SV001	PC1	-	-	-	-	-	-	-	-
SV002	PC2	-	-	-	-	-	-	-	-
SV003	PGN1	33	33	33	33	33	33	33	33
SV004	PGN2	0	0	0	0	0	0	0	0
SV005	VGN1	50	80	50	80	50	115	80	130
SV006		0	0	0	0	0	0	0	0
SV007		0	0	0	0	0	0	0	0
SV008	VIA	1364	1364	1364	1364	1364	1364	1364	1364
SV009	IQA	8192	4096	8192	4096	8192	2048	4096	2048
SV010	IDA	8192	4096	8192	4096	8192	2048	4096	2048
SV011	IQG	512	256	384	256	384	256	384	256
SV012	IDG	512	256	384	256	384	256	384	256
SV013	ILMT	500	500	500	500	500	500	500	500
SV014	ILMTsp	500	500	500	500	500	500	500	500
SV015	FFC	0	0	0	0	0	0	0	0
SV016	LMC1	0	0	0	0	0	0	0	0
SV017	SPEC	0000	0000	0000	0000	0000	0000	0000	0000
SV018	PIT	-	-	-	-	-	-	-	-
SV019	RNG1	-	-	-	-	-	-	-	-
SV020	RNG2	-	-	-	-	-	-	-	-
SV021	OLT	60	60	60	60	60	60	60	60
SV022	OLL	150	150	150	150	150	150	150	150
SV023	OD1	-	-	-	-	-	-	-	-
SV024	INP	50	50	50	50	50	50	50	50
SV025	MTYP	22B0	22B1	22B1	22B2	22B2	22B3	22B3	22B4
SV026	OD2	-	-	-	-	-	-	-	-
SV027	SSF1	4000	4000	4000	4000	4000	4000	4000	4000
SV028		0	0	0	0	0	0	0	0
SV029		0	0	0	0	0	0	0	0
SV030	IVC	0	0	0	0	0	0	0	0
SV031	OVS1	0	0	0	0	0	0	0	0
SV032	TOF	0	0	0	0	0	0	0	0

Γ	Notor	HC 52	HC 102*	HC 102	HC 152*	HC 152	HC 202*	HC 202	HC 352*
	ive unit apacity	06	07	10	10	20	10	20	20
SV033	SSF2	0	0	0	0	0	0	0	0
SV034	SSF3	0	0	0	0	0	0	0	0
SV035	SSF4	0	0	0	0	0	0	0	0
SV036	PTYP	-	-	-	-	-	-	-	-
SV037	JL	0	0	0	0	0	0	0	0
SV038	FHz1	0	0	0	0	0	0	0	0
SV039	LMCD	0	0	0	0	0	0	0	0
SV040	LMCT	0	0	0	0	0	0	0	0
SV041	LMC2	0	0	0	0	0	0	0	0
SV042	OVS2	0	0	0	0	0	0	0	0
SV043	OBS1	0	0	0	0	0	0	0	0
SV044	OBS2	0	0	0	0	0	0	0	0
SV045	TRUB	0	0	0	0	0	0	0	0
SV046		0	0	0	0	0	0	0	0
SV047	EC	100	100	100	100	100	100	100	100
SV048	EMGrt	0	0	0	0	0	0	0	0
SV049	PGN1sp	15	15	15	15	15	15	15	15
SV050	PGN2sp	0	0	0	0	0	0	0	0
SV051		0	0	0	0	0	0	0	0
SV052		0	0	0	0	0	0	0	0
SV053	OD3	0	0	0	0	0	0	0	0
SV054		0	0	0	0	0	0	0	0
SV055		0	0	0	0	0	0	0	0
SV056	EMGt	0	0	0	0	0	0	0	0
SV057	SHGC	0	0	0	0	0	0	0	0
SV058	SHGCsp	0	0	0	0	0	0	0	0
SV059	TCNV	0	0	0	0	0	0	0	0
SV060	TLMT	0	0	0	0	0	0	0	0
SV061	DA1NO	0	0	0	0	0	0	0	0
SV062	DA2NO	0	0	0	0	0	0	0	0
SV063	DA1MPY	0	0	0	0	0	0	0	0
SV064	DA2MPY	0	0	0	0	0	0	0	0
SV065		0	0	0	0	0	0	0	0

ſ	Motor	HC 53	HC 103	HC 153	HC 203*	HC 103R	HC 153R	HC 203R
	ive unit apacity	06	10	20	20	10	10	20
SV001	PC1	-	-	-	-	-	-	-
SV002	PC2	-	-	-	-	-	-	-
SV003	PGN1	33	33	33	33	33	33	33
SV004	PGN2	0	0	0	0	0	0	0
SV005	VGN1	80	80	80	100	10	10	10
SV006		0	0	0	0	0	0	0
SV007		0	0	0	0	0	0	0
SV008	VIA	1364	1364	1364	1364	1364	1364	1364
SV009	IQA	4096	4096	4096	2048	8192	8192	8192
SV010	IDA	4096	4096	4096	2048	8192	8192	8192
SV011	IQG	256	256	256	200	384	384	256
SV012	IDG	256	256	256	200	384	384	256
SV013	ILMT	500	500	500	500	500	500	500
SV014	ILMTsp	500	500	500	500	500	500	500
SV015	FFC	0	0	0	0	0	0	0
SV016	LMC1	0	0	0	0	0	0	0
SV017	SPEC	0000	0000	0000	0000	0000	0000	0000
SV018	PIT	-	-	-	-	-	-	-
SV019	RNG1	-	-	-	-	-	-	-
SV020	RNG2	-	-	-	-	-	-	-
SV021	OLT	60	60	60	60	60	60	60
SV022	OLL	150	150	150	150	150	150	150
SV023	OD1	-	-	-	-	-	-	-
SV024	INP	50	50	50	50	50	50	50
SV025	MTYP	22C0	22C1	22C2	22C3	22E1	22E2	22E3
SV026	OD2	-	-	-	-	-	-	-
SV027	SSF1	4000	4000	4000	4000	4000	4000	4000
SV028		0	0	0	0	0	0	0
SV029		0	0	0	0	0	0	0
SV030	IVC	0	0	0	0	0	0	0
SV031	OVS1	0	0	0	0	0	0	0
SV032	TOF	0	0	0	0	0	0	0

	Notor	HC 53	HC 103	HC 153	HC 203*	HC 103R	HC 153R	HC 203R
	ive unit apacity	06	10	20	20	10	10	20
SV033	SSF2	0	0	0	0	0	0	0
SV034	SSF3	0	0	0	0	0	0	0
SV035	SSF4	0	0	0	0	0	0	0
SV036	PTYP	-	-	-	-	-	-	-
SV037	JL	0	0	0	0	0	0	0
SV038	FHz1	0	0	0	0	0	0	0
SV039	LMCD	0	0	0	0	0	0	0
SV040	LMCT	0	0	0	0	0	0	0
SV041	LMC2	0	0	0	0	0	0	0
SV042	OVS2	0	0	0	0	0	0	0
SV043	OBS1	0	0	0	0	0	0	0
SV044	OBS2	0	0	0	0	0	0	0
SV045	TRUB	0	0	0	0	0	0	0
SV046		0	0	0	0	0	0	0
SV047	EC	100	100	100	100	100	100	100
SV048	EMGrt	0	0	0	0	0	0	0
SV049	PGN1sp	15	15	15	15	15	15	15
SV050	PGN2sp	0	0	0	0	0	0	0
SV051		0	0	0	0	0	0	0
SV052		0	0	0	0	0	0	0
SV053	OD3	0	0	0	0	0	0	0
SV054		0	0	0	0	0	0	0
SV055		0	0	0	0	0	0	0
SV056	EMGt	0	0	0	0	0	0	0
SV057	SHGC	0	0	0	0	0	0	0
SV058	SHGCsp	0	0	0	0	0	0	0
SV059	TCNV	0	0	0	0	0	0	0
SV060	TLMT	0	0	0	0	0	0	0
SV061	DA1NO	0	0	0	0	0	0	0
SV062	DA2NO	0	0	0	0	0	0	0
SV063	DA1MPY	0	0	0	0	0	0	0
SV064	DA2MPY	0	0	0	0	0	0	0
SV065		0	0	0	0	0	0	0

(b) HA**N series

M	lotor	HA 40N	HA 80N	HA 100N	HA 200N*	HA 053N	HA 13N	HA 23N	HA 33N	HA 43N	HA 83N	HA 103N*
	ve unit pacity	06	10	20	20	01	01	03	03	06	10	20
SV001	PC1	-	-	-	-	-	-	-	-	-	-	-
SV002	PC2	-	-	-	-	-	-	-	-	-	-	-
SV003	PGN1	33	33	33	33	33	33	33	33	33	33	33
SV004	PGN2	0	0	0	0	0	0	0	0	0	0	0
SV005	VGN1	90	150	150	220	35	35	35	35	120	150	180
SV006		0	0	0	0	0	0	0	0	0	0	0
SV007		0	0	0	0	0	0	0	0	0	0	0
SV008	VIA	1364	1364	1364	1364	1364	1364	1364	1364	1364	1364	1364
SV009	IQA	2048	2048	2048	2048	2048	2048	2048	2048	2048	2048	2048
SV010	IDA	2048	2048	2048	2048	2048	2048	2048	2048	2048	2048	2048
SV011	IQG	512	512	512	200	256	256	256	256	512	512	512
SV012	IDG	512	512	512	200	256	256	256	256	512	512	512
SV013	ILMT	500	500	500	500	500	500	500	500	500	500	500
SV014	ILMTsp	500	500	500	500	500	500	500	500	500	500	500
SV015	FFC	0	0	0	0	0	0	0	0	0	0	0
SV016	LMC1	0	0	0	0	0	0	0	0	0	0	0
SV017	SPEC	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000
SV018	PIT	-	-	-	-	-	-	-	-	-	-	-
SV019	RNG1	-	-	-	-	-	-	-	-	-	-	-
SV020	RNG2	-	-	-	-	-	-	-	-	-	-	-
SV021	OLT	60	60	60	60	60	60	60	60	60	60	60
SV022	OLL	150	150	150	150	150	150	150	150	150	150	150
SV023	OD1	-	-	-	-	-	-	-	-	-	-	-
SV024	INP	50	50	50	50	50	50	50	50	50	50	50
SV025	MTYP	2200	2201	2202	2203	228C	228D	228E	228F	2280	2281	2282
SV026	OD2	-	-	-	-	-	-	-	-	-	-	-
SV027	SSF1	4000	4000	4000	4000	4000	4000	4000	4000	4000	4000	4000
SV028		0	0	0	0	0	0	0	0	0	0	0
SV029		0	0	0	0	0	0	0	0	0	0	0
SV030	IVC	0	0	0	0	0	0	0	0	0	0	0
SV031	OVS1	0	0	0	0	0	0	0	0	0	0	0
SV032	TOF	0	0	0	0	0	0	0	0	0	0	0

M	otor	HA 40N	HA 80N	HA 100N	HA 200N*	HA 053N	HA 13N	HA 23N	HA 33N	HA 43N	HA 83N	HA 103N*
	ve unit bacity	06	10	20	20	01	01	03	03	06	10	20
SV033	SSF2	0	0	0	0	0	0	0	0	0	0	0
SV034	SSF3	0	0	0	0	0	0	0	0	0	0	0
SV035	SSF4	0	0	0	0	0	0	0	0	0	0	0
SV036	PTYP	-	-	-	-	-	-	-	-	-	-	-
SV037	JL	0	0	0	0	0	0	0	0	0	0	0
SV038	FHz1	0	0	0	0	0	0	0	0	0	0	0
SV039	LMCD	0	0	0	0	0	0	0	0	0	0	0
SV040	LMCT	0	0	0	0	0	0	0	0	0	0	0
SV041	LMC2	0	0	0	0	0	0	0	0	0	0	0
SV042	OVS2	0	0	0	0	0	0	0	0	0	0	0
SV043	OBS1	0	0	0	0	0	0	0	0	0	0	0
SV044	OBS2	0	0	0	0	0	0	0	0	0	0	0
SV045	TRUB	0	0	0	0	0	0	0	0	0	0	0
SV046		0	0	0	0	0	0	0	0	0	0	0
SV047	EC	100	100	100	100	100	100	100	100	100	100	100
SV048	EMGrt	0	0	0	0	0	0	0	0	0	0	0
SV049	PGN1sp	15	15	15	15	15	15	15	15	15	15	15
SV050	PGN2sp	0	0	0	0	0	0	0	0	0	0	0
SV051		0	0	0	0	0	0	0	0	0	0	0
SV052		0	0	0	0	0	0	0	0	0	0	0
SV053	OD3	0	0	0	0	0	0	0	0	0	0	0
SV054		0	0	0	0	0	0	0	0	0	0	0
SV055		0	0	0	0	0	0	0	0	0	0	0
SV056	EMGt	0	0	0	0	0	0	0	0	0	0	0
SV057	SHGC	0	0	0	0	0	0	0	0	0	0	0
SV058	SHGCsp	0	0	0	0	0	0	0	0	0	0	0
SV059	TCNV	0	0	0	0	0	0	0	0	0	0	0
SV060	TLMT	0	0	0	0	0	0	0	0	0	0	0
SV061	DA1NO	0	0	0	0	0	0	0	0	0	0	0
SV062	DA2NO	0	0	0	0	0	0	0	0	0	0	0
SV063	DA1MPY	0	0	0	0	0	0	0	0	0	0	0
SV064	DA2MPY	0	0	0	0	0	0	0	0	0	0	0
SV065		0	0	0	0	0	0	0	0	0	0	0

(c) HC-SF series

M	otor	HC-SF 52	HC-SF 102	HC-SF 152	HC-SF 202	HC-SF 352	HC-SF 53	HC-SF 103	HC-SF 153	HC-SF 203	HC-SF 353
Driv	/e unit	00	07	40	40	00	00	07	40	10	00
ca	oacity	06	07	10	10	20	06	07	10	10	20
SV001	PC1	-	-	-	-	-	-	-	-	-	-
SV002	PC2	-	-	-	-	-	-	-	-	-	-
SV003	PGN1	33	33	33	33	33	33	33	33	33	33
SV004	PGN2	0	0	0	0	0	0	0	0	0	0
SV005	VGN1	80	80	80	120	130	90	90	130	180	180
SV006		0	0	0	0	0	0	0	0	0	0
SV007		0	0	0	0	0	0	0	0	0	0
SV008	VIA	1364	1364	1364	1364	1364	1364	1364	1364	1364	1364
SV009	IQA	8192	4096	4096	2048	2048	4096	4096	2048	2048	2048
SV010	IDA	8192	4096	4096	2048	2048	4096	4096	2048	2048	2048
SV011	IQG	500	300	300	300	250	250	250	200	200	200
SV012	IDG	500	300	300	300	250	250	250	200	200	200
SV013	ILMT	500	500	500	500	500	500	500	500	500	500
SV014	ILMTsp	500	500	500	500	500	500	500	500	500	500
SV015	FFC	0	0	0	0	0	0	0	0	0	0
SV016	LMC1	0	0	0	0	0	0	0	0	0	0
SV017	SPEC	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000
SV018	PIT	-	-	-	-	-	-	-	-	-	-
SV019	RNG1	16	16	16	16	16	16	16	16	16	16
SV020	RNG2	16	16	16	16	16	16	16	16	16	16
SV021	OLT	60	60	60	60	60	60	60	60	60	60
SV022	OLL	150	150	150	150	150	150	150	150	150	150
SV023	OD1	-	-	-	-	-	-	-	-	-	-
SV024	INP	50	50	50	50	50	50	50	50	50	50
SV025	MTYP	22B0	22B1	22B2	22B3	22B4	22C0	22C1	22C2	22C3	22C4
SV026	OD2	-	-	-	-	-	-	-	-	-	-
SV027	SSF1	4000	4000	4000	4000	4000	4000	4000	4000	4000	4000
SV028		0	0	0	0	0	0	0	0	0	0
SV029		0	0	0	0	0	0	0	0	0	0
SV030	IVC	0	0	0	0	0	0	0	0	0	0
SV031	OVS1	0	0	0	0	0	0	0	0	0	0
SV032	TOF	0	0	0	0	0	0	0	0	0	0

M	otor	HC-SF 52	HC-SF 102	HC-SF 152	HC-SF 202	HC-SF 352	HC-SF 53	HC-SF 103	HC-SF 153	HC-SF 203	HC-SF 353
	ve unit pacity	06	07	10	10	20	06	07	10	10	20
SV033	SSF2	0	0	0	0	0	0	0	0	0	0
SV034	SSF3	0	0	0	0	0	0	0	0	0	0
SV035	SSF4	0	0	0	0	0	0	0	0	0	0
SV036	PTYP	-	-	-	-	-	-	-	-	-	-
SV037	JL	0	0	0	0	0	0	0	0	0	0
SV038	FHz1	0	0	0	0	0	0	0	0	0	0
SV039	LMCD	0	0	0	0	0	0	0	0	0	0
SV040	LMCT	0	0	0	0	0	0	0	0	0	0
SV041	LMC2	0	0	0	0	0	0	0	0	0	0
SV042	OVS2	0	0	0	0	0	0	0	0	0	0
SV043	OBS1	0	0	0	0	0	0	0	0	0	0
SV044	OBS2	0	0	0	0	0	0	0	0	0	0
SV045	TRUB	0	0	0	0	0	0	0	0	0	0
SV046		0	0	0	0	0	0	0	0	0	0
SV047	EC	100	100	100	100	100	100	100	100	100	100
SV048	EMGrt	0	0	0	0	0	0	0	0	0	0
SV049	PGN1sp	15	15	15	15	15	15	15	15	15	15
SV050	PGN2sp	0	0	0	0	0	0	0	0	0	0
SV051		0	0	0	0	0	0	0	0	0	0
SV052		0	0	0	0	0	0	0	0	0	0
SV053	OD3	0	0	0	0	0	0	0	0	0	0
SV054		0	0	0	0	0	0	0	0	0	0
SV055		0	0	0	0	0	0	0	0	0	0
SV056	EMGt	0	0	0	0	0	0	0	0	0	0
SV057	SHGC	0	0	0	0	0	0	0	0	0	0
SV058	SHGCsp	0	0	0	0	0	0	0	0	0	0
SV059	TCNV	0	0	0	0	0	0	0	0	0	0
SV060	TLMT	0	0	0	0	0	0	0	0	0	0
SV061	DA1NO	0	0	0	0	0	0	0	0	0	0
SV062	DA2NO	0	0	0	0	0	0	0	0	0	0
SV063	DA1MPY	0	0	0	0	0	0	0	0	0	0
SV064	DA2MPY	0	0	0	0	0	0	0	0	0	0
SV065		0	0	0	0	0	0	0	0	0	0

(d) HC-RF/HA-FF series

N	Notor	HC-RF 103	HC-RF 153	HC-RF 203	HA-FF 053	HA-FF 13	HA-FF 23	HA-FF 33	HA-FF 43	HA-FF 63
Dri	ve unit	40	40	00	04	04	00	00	0.4	00
ca	pacity	10	10	20	01	01	03	03	04	06
SV001	PC1	-	-	-	-	-	-	-	-	-
SV002	PC2	-	-	-	-	-	-	-	-	-
SV003	PGN1	33	33	33	33	33	33	33	33	33
SV004	PGN2	0	0	0	0	0	0	0	0	0
SV005	VGN1	10	10	10	10	13	13	18	20	20
SV006		0	0	0	0	0	0	0	0	0
SV007		0	0	0	0	0	0	0	0	0
SV008	VIA	1364	1364	1364	1364	1364	1364	1364	1364	1364
SV009	IQA	8192	8192	8192	8192	4096	4096	4096	4096	4096
SV010	IDA	8192	8192	8192	8192	4096	4096	4096	4096	4096
SV011	IQG	384	384	256	500	300	700	500	700	700
SV012	IDG	384	384	256	500	300	700	500	700	700
SV013	ILMT	500	500	500	500	500	500	500	500	500
SV014	ILMTsp	500	500	500	500	500	500	500	500	500
SV015	FFC	0	0	0	0	0	0	0	0	0
SV016	LMC1	0	0	0	0	0	0	0	0	0
SV017	SPEC	0000	0000	0000	0000	0000	0000	0000	0000	0000
SV018	PIT	-	-	-	-	-	-	-	-	-
SV019	RNG1	16	16	16	8	8	8	8	8	8
SV020	RNG2	16	16	16	8	8	8	8	8	8
SV021	OLT	60	60	60	60	60	60	60	60	60
SV022	OLL	150	150	150	150	150	150	150	150	150
SV023	OD1	-	-	-	-	-	-	-	-	-
SV024	INP	50	50	50	50	50	50	50	50	50
SV025	MTYP	22E1	22E2	22E3	227C	227D	227E	227F	2270	2271
SV026	OD2	-	-	-	-	-	-	-	-	-
SV027	SSF1	4000	4000	4000	4000	4000	4000	4000	4000	4000
SV028		0	0	0	0	0	0	0	0	0
SV029		0	0	0	0	0	0	0	0	0
SV030	IVC	0	0	0	0	0	0	0	0	0
SV031	OVS1	0	0	0	0	0	0	0	0	0
SV032	TOF	0	0	0	0	0	0	0	0	0

Ν	lotor	HC-RF 103	HC-RF 153	HC-RF 203	HA-FF 053	HA-FF 13	HA-FF 23	HA-FF 33	HA-FF 43	HA-FF 63
	ve unit pacity	10	10	20	01	01	03	03	04	06
SV033	SSF2	0	0	0	0	0	0	0	0	0
SV034	SSF3	0	0	0	0	0	0	0	0	0
SV035	SSF4	0	0	0	0	0	0	0	0	0
SV036	PTYP	-	-	-	-	-	-	-	-	-
SV037	JL	0	0	0	0	0	0	0	0	0
SV038	FHz1	0	0	0	0	0	0	0	0	0
SV039	LMCD	0	0	0	0	0	0	0	0	0
SV040	LMCT	0	0	0	0	0	0	0	0	0
SV041	LMC2	0	0	0	0	0	0	0	0	0
SV042	OVS2	0	0	0	0	0	0	0	0	0
SV043	OBS1	0	0	0	0	0	0	0	0	0
SV044	OBS2	0	0	0	0	0	0	0	0	0
SV045	TRUB	0	0	0	0	0	0	0	0	0
SV046		0	0	0	0	0	0	0	0	0
SV047	EC	100	100	100	100	100	100	100	100	100
SV048	EMGrt	0	0	0	0	0	0	0	0	0
SV049	PGN1sp	15	15	15	15	15	15	15	15	15
SV050	PGN2sp	0	0	0	0	0	0	0	0	0
SV051		0	0	0	0	0	0	0	0	0
SV052		0	0	0	0	0	0	0	0	0
SV053	OD3	0	0	0	0	0	0	0	0	0
SV054		0	0	0	0	0	0	0	0	0
SV055		0	0	0	0	0	0	0	0	0
SV056	EMGt	0	0	0	0	0	0	0	0	0
SV057	SHGC	0	0	0	0	0	0	0	0	0
SV058	SHGCsp	0	0	0	0	0	0	0	0	0
SV059	TCNV	0	0	0	0	0	0	0	0	0
SV060	TLMT	0	0	0	0	0	0	0	0	0
SV061	DA1NO	0	0	0	0	0	0	0	0	0
SV062	DA2NO	0	0	0	0	0	0	0	0	0
SV063	DA1MPY	0	0	0	0	0	0	0	0	0
SV064	DA2MPY	0	0	0	0	0	0	0	0	0
SV065		0	0	0	0	0	0	0	0	0

(e) HC-MF series

Ν	lotor	HC-MF 053	HC-MF 13	HC-MF 23	HC-MF 43	HC-MF 73
	ve unit pacity	01	01	03	04	07
SV001	PC1	-	-	-	-	-
SV002	PC2	-	-	-	-	-
SV003	PGN1	33	33	33	33	33
SV004	PGN2	0	0	0	0	0
SV005	VGN1	6	6	6	6	8
SV006		0	0	0	0	0
SV007		0	0	0	0	0
SV008	VIA	1364	1364	1364	1364	1364
SV009	IQA	4096	4096	4096	4096	4096
SV010	IDA	4096	4096	4096	4096	4096
SV011	IQG	200	300	400	300	300
SV012	IDG	200	300	400	300	300
SV013	ILMT	500	500	500	500	500
SV014	ILMTsp	500	500	500	500	500
SV015	FFC	0	0	0	0	0
SV016	LMC1	0	0	0	0	0
SV017	SPEC	0000	0000	0000	0000	0000
SV018	PIT	-	-	-	-	-
SV019	RNG1	8	8	8	8	8
SV020	RNG2	8	8	8	8	8
SV021	OLT	60	60	60	60	60
SV022	OLL	150	150	150	150	150
SV023	OD1	-	-	-	-	-
SV024	INP	50	50	50	50	50
SV025	MTYP	229C	229D	229E	2290	2291
SV026	OD2	-	-	-	-	-
SV027	SSF1	4000	4000	4000	4000	4000
SV028		0	0	0	0	0
SV029		0	0	0	0	0
SV030	IVC	0	0	0	0	0
SV031	OVS1	0	0	0	0	0
SV032	TOF	0	0	0	0	0

Ν	lotor	HC-MF 053	HC-MF 13	HC-MF 23	HC-MF 43	HC-MF 73
Dri	ve unit	01	01	03	04	07
ca	pacity	01	01	05	04	07
SV033	SSF2	0	0	0	0	0
SV034	SSF3	0	0	0	0	0
SV035	SSF4	0	0	0	0	0
SV036	PTYP	-	-	-	-	-
SV037	JL	0	0	0	0	0
SV038	FHz1	0	0	0	0	0
SV039	LMCD	0	0	0	0	0
SV040	LMCT	0	0	0	0	0
SV041	LMC2	0	0	0	0	0
SV042	OVS2	0	0	0	0	0
SV043	OBS1	0	0	0	0	0
SV044	OBS2	0	0	0	0	0
SV045	TRUB	0	0	0	0	0
SV046		0	0	0	0	0
SV047	EC	100	100	100	100	100
SV048	EMGrt	0	0	0	0	0
SV049	PGN1sp	15	15	15	15	15
SV050	PGN2sp	0	0	0	0	0
SV051		0	0	0	0	0
SV052		0	0	0	0	0
SV053	OD3	0	0	0	0	0
SV054		0	0	0	0	0
SV055		0	0	0	0	0
SV056	EMGt	0	0	0	0	0
SV057	SHGC	0	0	0	0	0
SV058	SHGCsp	0	0	0	0	0
SV059	TCNV	0	0	0	0	0
SV060	TLMT	0	0	0	0	0
SV061	DA1NO	0	0	0	0	0
SV062	DA2NO	0	0	0	0	0
SV063	DA1MPY	0	0	0	0	0
SV064	DA2MPY	0	0	0	0	0
SV065		0	0	0	0	0

7.2 MDS-C1-Vx High-gain (MDS-B-Vx4 Compatible)

(1) Details for servo parameters

For parameters marked with a (PR) in the table, turn the NC power OFF after setting. After the power is turned ON again, the parameter is validated.

In the explanation on bits, set all bits not used, including blank bits, to "0".

No.		Items	Details	Setting range
2201 (PR)	SV001 PC1	Motor side gear ratio	For the rotary axis, set the total deceleration	1 to 32767
2202 (PR)	SV002 PC2	Machine side gear ratio	(acceleration) ratio. Even if the gear ratio is within the setting range, the electronic gears may overflow and cause an alarm.	1 to 32767
2203	SV003 PGN1	Position loop gain 1	Set the position loop gain. The standard setting is "33". The higher the setting value is, the more precisely the command can be followed and the shorter the positioning time gets, however, note that a bigger shock is applied to the machine during acceleration/deceleration. When using the SHG control, also set SV004 (PGN2) and SV057 (SHGC). (If "201" or bigger is set, the SHG control cannot be used.)	1 to 200 (In case of MDS-B-Vx4, 1 to 400) (rad/s)
2204	SV004 PGN2	Position loop gain 2	When using the SHG control, also set SV003 (PGN1) and SV057 (SHGC). When not using the SHG control, set to "0".	0 to 999 (rad/s)
2205	SV005 VGN1	Speed loop gain 1	Set the speed loop gain. Set this according to the load inertia size. The higher the setting value is, the more accurate the control will be, however, vibration tends to occur. If vibration occurs, adjust by lowering by 20 to 30%. The value should be determined to be 70 to 80% of the value at the time when the vibration stops.	1 to 999
2206	SV006 VGN2	Speed loop gain 2	If the noise is bothersome at high speed during rapid traverse, etc, lower the speed loop gain. As in the right figure, set the speed loop gain of the speed 1.2 times as fast as the motor's rated speed, and use this with SV029 (VCS). When not using, set to "0". VGN1 VGN2 0 VCS VLMT	-1000 to 1000
			(Rated speed*1.2)	

No.		Items	Details	Setting range
2207	SV007 VIL	Speed loop delay compensation	Set this when the limit cycle occurs in the full-closed loop, or overshooting occurs in positioning. Select the control method with SV027 (SSF1)/bit1, 0 (vcnt). Normally, use "Changeover type 2". When you set this parameter, make sure to set the torque offset (SV032 (TOF)). When not using, set to "0".	0 to 32767
			No changeover When SV027 (SSF1)/ bit1, 0 (vcnt)=00 The delay compensation control is always valid.	
			Changeover type 1 When SV027 (SSF1)/ bit1, 0 (vcnt)=01 The delay compensation control works when the command from the NC is "0". Overshooting that occurs during pulse feeding can be suppressed.	
			Changeover type 2 When SV027 (SSF1)/ bit1, 0 (vcnt)=10 The delay compensation control works when the command from the NC is "0" and the position droop is "0". Overshooting or the limit cycle that occurs during pulse feeding or positioning can be suppressed.	
2208	SV008 VIA	Speed loop lead compensation	Set the gain of the speed loop integration control. The standard setting is "1364". During the SHG control, the standard setting is "1900". Adjust the value by increasing/decreasing it by about 100 at a time. Raise this value to improve contour tracking precision in high-speed cutting. Lower this value when the position droop vibrates (10 to 20Hz).	1 to 9999
2209	SV009 IQA	Current loop q axis lead compensation	Set the gain of current loop. As this setting is determined by the motor's electrical characteristics, the setting is fixed for each type of	1 to 20480
2210	SV010 IDA	Current loop d axis lead compensation	motor. Set the standard values for all the parameters depending on each motor type.	
2211	SV011 IQG	Current loop q axis gain		1 to 4096 (In case of
2212	SV012 IDG	Current loop d axis gain		MDS-B-Vx4, 1 to 8192)
2213	SV013 ILMT	Current limit value	Set the normal current (torque) limit value. (Limit values for both + and - direction.) When the value is "500" (a standard setting), the maximum torque is determined by the specification of the motor.	0 to 999 (Stall [rated] current %)
2214	SV014 ILMTsp	Current limit value in special control	Set the current (torque) limit value in a special control (initial absolute position setting, stopper control, etc). (Limit values for both of the + and - directions.) Set to "500" when not using.	0 to 999 (Stall [rated] current %)

No.		Items	Details	Setting range
2215	SV015 FFC	Acceleration rate feed forward gain	When a relative error in the synchronous control is large, apply this parameter to the axis that is delaying. The standard setting value is "0". For the SHG control, set to "100". To adjust a relative error in acceleration/deceleration, increase the value by 50 to 100 at a time.	0 to 999(%)
2216	SV016 LMC1	Lost motion compensa- tion 1	Set this when the protrusion (that occurs due to the non-sensitive band by friction, torsion, backlash, etc) at quadrant change is too large. This compensates the torque at quadrant change. This is valid only when the lost motion compensation (SV027 (SSF1/Imc)) is selected.	
			Type 1: When SV027 (SSF1)/ bit9, 8 (Imc)=01 Set the compensation amount based on the motor torque before the quadrant change. The standard setting is "100". Setting to "0" means the compensation amount is zero. Normally, use Type 2.	-1 to 200 (%)
			Type 2: When SV027 (SSF1)/ bit9, 8 (Imc)=10 Set the compensation amount based on the stall (rated) current of the motor. The standard setting is double of the friction torque. Setting to "0" means the compensation amount is zero.	-1 to 100 (Stall [rated] current %)
			When you wish different compensation amount depending on the direction When SV041 (LMC2) is "0", compensate with the value of SV016 (LMC1) in both of the + and -directions. If you wish to change the compensation amount depending on the command direction, set this and SV041 (LMC2). (SV016: + direction, SV041: - direction. However, the directions may be opposite depending on other settings.) When "-1" is set, the compensation won't be performed in the direction of the command.	

No.		Items				Deta	ils				Setti	ng range
2217	SV017	Servo		F	E	D	С	В		А	9	8
(PR)	SPEC	specification			sp			drv	all	drvup	mpt3	mp
		selection	-	7	6	5	4	3		2	1	0
				abs		vdir	fdir	vfl	b	seqh	dfbx	fdir2
				bit		ng when		et	Ν	<i>l</i> leaning	when "1	" is set
			0	fdir2	Speed fe polarity	edback fo	orward			eed feedb arity	ack reve	erse
			1	dfbx	Dual feed	back cor	ntrol stop		Dua	al feedba	ck contro	l start
			2	seqh	READY/S			mal	RE/ spe	ADY/Served	/o ON tin	ne high
			3	vfb	Speed fe	edback fi	lter stop			ed feed 50Hz)	dback f	ilter stop
			4	fdir	Position f	eedback	forward			sition feed arity	back rev	/erse
			5	vdir	Standard	setting			HA Det	motor (4	allation p	tor) position 90
			6						ucy	лесэ (D,	0)	
			6 7	abs	Incremer	tal contro			Abs	solute pos	sition cor	trol
			8	mp	MP scale					scale 72		
			9	mpt3	MP scale			<u>1</u>				ion type 3
			A	drvup	Standard	setting			who	ose capao ner/lower	city is 1 r	adrive unit ank standard
			В	drvall	Setting fo	or normal	use		Pos			drive unit
			C D E F	spm	1 :	MDS-C1-	ing the S ·Vx)		driv	e unit (O	nly in the	case of
					et to "0" fo t3 (vfb) is				des	cription.		

No.		Items	Deta	ails	Setting range
2218 (PR)	SV018 PIT	Ball screw pitch	Set the ball screw pitch. Set	to "360" for the rotary as	kis. 1 to 32767 (mm/rev)
2219 (PR)	SV019 RNG1	Position detector resolution	In the case of the semi-close Set the same value as SV02 explanation of SV020.)		1 to 9999 (kp/rev)
			In the case of the semi-close Set the same value as SV02 explanation of SV020.)		1 to 9999 (kp/pit)
			Detector model name	Resolution	SV019 setting
			OHE25K-ET, OHA25K-ET		100
			OSE104-ET, OSA104-ET	100,000(p/rev)	100
			OSE105-ET, OSA105-ET	1,000,000(p/rev)	1000
			RCN723 (Heidenhain)	8,000,000(p/rev)	8000
			Relative position detection scale	Refer to specification manual for each detector	PIT/Resolution (µm)
			AT41 (Mitsutoyo)	1 (µm/p)	The same as SV018 (PIT)
			FME type, FLE type (Futaba)	Refer to specification manual for each detector	PIT/Resolution (µm)
			MP type (Mitsubishi	Refer to specification	PIT/Resolution (µm)
			Heavy Industries)	manual for each detector	
			AT342 (Mitsutoyo)	0.5 (µm/p)	Twice as big as SV018 (PIT)
			AT343 (Mitsutoyo)	0.05 (μm/p)	20 times as big as SV018 (PIT)
			LC191M (Heidenhain)	Refer to specification manual for each detector	PIT/Resolution (µm)
			LC491M (Heidenhain)	Refer to specification manual for each detector	PIT/Resolution (µm)
2220 (PR)	SV020 RNG2	detector	Set the number of pulses per end detector.	r one revolution of the m	otor 1 to 9999 (kp/rev)
		resolution	Detector model nam	e SV020 setting	g
			OSE104, OSA104	100	<u> </u>
			OSE105, OSA105	1000	

No.	I	tems	Details	Setting range
2221	SV021 OLT	Overload detection time constant	Set the detection time constant of Overload 1 (Alarm 50). Set to "60" as a standard. (For machine tool builder adjustment.)	1 to 999 (s)
2222	SV022 OLL	Overload detection level	Set the current detection level of Overload 1 (Alarm 50) in respect to the stall (rated) current. Set to "150" as a standard. (For machine tool builder adjustment.)	110 to 500 (Stall [rated] current %)
2223	SV023 OD1	Excessive error detection width during servo ON	Set the excessive error detection width when servo ON. <standard setting="" value=""> $OD1=OD2=\frac{\begin{array}{c} Rapid traverse rate \\ (mm/min) \\ 60*PGN1 \end{array} /2 (mm) \\ When "0" is set, the excessive error detection will not be performed. \end{array}$</standard>	0 to 32767 (mm)
2224	SV024 INP	In-position detection width	Set the in-position detection width. Set the accuracy required for the machine. The lower the setting is, the higher the positioning accuracy gets, however, the cycle time (setting time) becomes longer. The standard setting is "50".	0 to 32767 (μm)

SV025 MTYP	Motor /Detector type	F 7	E 6	D pen 5		С	В	А		9		8
	/Detector		6									
	type		6	5					ent			
						4	3	2		1		0
						r	mtyp					
		1.14										
		bit				E	Explanat	ion				
		0	Set the	motor type.			•					
		0		along with §	SV01	7 (SF	PEC)/spm.					
		2	1) Wh	nen SV017/s	spm=	0 (No	ormal drive	unit)				
			Set-	0.2	4.		2x	21	4)	. Ev	6x	7.
		3	ting	0x	1x		2X	3x	4)	C 5X	σx	/X
		4 mtyp	x0	HA40N		ŀ	HA50L	HA53L				
		5	x1	HA80N		H	IA100L	HA103L	-			
		6	x2	HA100N		Н	IA200L	HA203I	-			
		7	x3	HA200N		Н	IA300L	HA303L	-			
			x4	HA300N		Н	IA500L	HA503L	- [
			x5	HA700N								
			x6	HA900N	ļļ			ļ				
			x7									
						HA	-LH15K2					
					ļ							
					ļ		IATSUL	HAIDJI	-			
					1	НА	-LF15K2	1				
			xE									
			xF									
			Set- ting	8x	9x	Ax	Bx	Сх	Dx	E	ĸ	Fx
			x0	HA43N	ļ		HC52	HC53				
			x1	HA83N					ļ			
			x2		ļ				ļ			
					ļ				ļļ			
						-						
					i	•				1100	551	
					<u> </u>			110700				
			x8	-	.	-						
			x9		<u> </u>							
			xA	HA93N]	ĺ]			
			хB									
			xC	HA053N								
			<u>xD</u>		ļ				ļļ			
					<u> </u>		\sim					
			4 mtyp 5 6 7 7	5 6 x1 6 7 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF Set- ting x0 x1 x2 x3 xA xB xC xB xC x1 xA xB xC xB xC xA xA xB xA xB xC xA xB xC xA xB xC xA xA xB xA xB xC xA xB xC xA xB xC xA xB xC xA	5 6 7 x1 HA80N x2 HA100N x3 HA200N x4 HA300N x5 HA700N x6 HA900N x7 x8 x9 xA xB xC xD xE xF	5 6 7 x1 x3 HA200N x4 HA300N x5 HA700N x6 HA900N x7 x8 x9 x4 x8 x9 xA x8 x9 xA xE x7 xF x7 x6 HA30N x7 x8 x0 HA43N x1 HA33N x2 HA103N x6 HA203N x7 x8 x7 x7 x8 9x x0 HA43N x1 HA30N x2 HA103N x3 HA203N x4 HA303N x5 HA703N x6 x7 x8 x9 xA HA93N x8 x9 x0 HA13N xE HA23N x8 x9 x0 HA13N	5 6 7 x1 HA80N H x2 HA100N H x3 HA200N H x4 HA300N H x4 HA300N H x5 HA700N x6 HA900N x7 HA x8 HA y9 x4 HA300N H x7 HA x8 HA X9 xA XA H XB XA H x8 XC XA HA XE XA x0 HA43N X X XA XE XA x6 X2 HA103N X3 XA XA XE x0 HA43N XS X3 HA203N XA XA XE XA XA XE XA XE XA XE XA XE XE	5 6 7 7 X1 HA80N HA100L x2 HA100N HA200L x3 HA20N HA300L x4 HA30N HA500L x5 HA70N HA500L x6 HA900N X7 x6 HA900N X7 x7 HA-LH11K2 x8 HA-LH15K2 x9 XA XA HA150L x8 HA103N HC52 HA103N x1 HA83N HC102 X2 x2 HA103N HC102 X2 X3 HA203N HC202 HC102 X4 HA303N HC322 X5 HA703N HC452 X6 HA053N	5 6 7 X1 HA80N HA100L HA103L X2 HA100N HA200L HA203L X3 HA200N HA300L HA303L X4 HA300N HA500L HA503L X5 HA700N X6 HA900N X7 HA-LH11K2 X8 HA-LH15K2 X9 XA HA150L HA153L X8 HA-LF15K2 X0 HA43N HC52 HC53 X0 HA43N HC52 HC53 X0 HA43N HC102 HC103 X0 HA43N HC52 HC53 X1 HA83N HC102 HC103 <	Set- XI HA80N HA100L HA103L x2 HA100N HA200L HA203L x3 HA200N HA300L HA303L x4 HA300N HA500L HA303L x4 HA300N HA500L HA503L x5 HA700N Image: Constraint of the state of the	5 6 7 7 X1 HA80N HA100L HA103L x2 HA100N HA200L HA203L X3 x3 HA200N HA300L HA303L X4 x4 HA300N HA500L HA503L X5 x5 HA700N X6 HA500L HA503L X5 X6 HA900N X6 HA-LH11K2 X8 X7 X8 X7 X8 X7 X8 X7 X8 X7 X8 X6 X7 X8 X8 X7 X8 X8 X8 X8 X8 X8 X9 X8 X9 X9 X9 X9 <td< td=""><td>5 6 7 7 X1 HA80N HA100L HA103L x2 HA100N HA200L HA203L L x3 HA200N HA300L HA303L L x4 HA300N HA500L HA503L L x5 HA700N L L L x6 HA900N L L L x7 HA-LH11K2 L L L x8 HA-LH15K2 L L L x9 L L L L L x8 HA150L HA153L L L L x8 L L L L L L x6 N HA150L HA153L L L L x7 HA103N HC52 HC53 L L L x6 N HA30N HC152 HC153 HC103R HC103R x7 HA103N HC202 HC203 HC153R HC153R HC153R</td></td<>	5 6 7 7 X1 HA80N HA100L HA103L x2 HA100N HA200L HA203L L x3 HA200N HA300L HA303L L x4 HA300N HA500L HA503L L x5 HA700N L L L x6 HA900N L L L x7 HA-LH11K2 L L L x8 HA-LH15K2 L L L x9 L L L L L x8 HA150L HA153L L L L x8 L L L L L L x6 N HA150L HA153L L L L x7 HA103N HC52 HC53 L L L x6 N HA30N HC152 HC153 HC103R HC103R x7 HA103N HC202 HC203 HC153R HC153R HC153R

No.	Items	Details Setting range											
		(Con	tinue	ed from th	e prev	vious pa	age))					
		bi	t					Explan					
					SV017	7/spm=1	1 (S	type driv		-			
				Set- ting	8x	9x		Ax	Bx	Сх	Dx	Ex	Fx
				x0									
				x1	ļ						[
				x2									
				x3									
				x4		11045		HC353					
				x5		HC452		HC453					
				x6 x7		HC702	۷						
				x8									
				x9									
				xA									
				хB									
				xC									
				xD									
				xE									
				xF									
			6	Set the det	ootor +	(00							
		8		Set the pos	-	•	tunn	for "non"	' and '	ho ono	od dot	ootor tu	no for
			**	ent". In th									
		Ae	ent "	pen" and "	ent".		Senn		000 00	11101, 5		same v	
				pon ana	0110.1		Detector model name						
				pen				-					
		В		pen setting	ent s	etting			Detecto	or moo	del nan	ne	
		Ср	en	pen setting	ent s	0		E104	Detecto	or moc	del nam	ne	
		C p D	en	pen setting 0 1	ent s	0	OSA	E104 A104		or moc	del nam	ne	
		C p D	en	pen setting 0 1 2	ent s	0 1 2	OSA	E104		or moc	del nam	ne	
		Ср	en	pen setting 0 1 2 3	ent s	0 1 2 3	OSA OSE	E104 A104 E105, OS	A105			ne	
		C p D	pen	pen setting 0 1 2	ent s	0 1 2 3 tting	OSA OSE	E104 A104	A105			ne	
		C p D	pen	pen setting 0 1 2 3	ent s	0 1 2 3 tting ssible	OSA OSE OHE	E104 A104 E105, OS E25K-ET	A105 , OSE ²	104-ET		1e	
		C p D	ben	pen setting 0 1 2 3 4 5	ent s	0 1 2 3 tting ssible tting ssible	OSA OSE OHE OHA	E104 A104 E105, OS E25K-ET A25K-ET	A105 , OSE ² , OSA ²	104-ET 104-ET	-		
		C p D	pen	pen setting 0 1 2 3 4 5 6	ent s	0 1 2 3 tting ssible tting ssible tting ssible	OSA OSE OHE OHA	E104 A104 E105, OS E25K-ET	A105 , OSE ² , OSA ² OSA1	104-ET 104-ET	-		
		C p D	pen	pen setting 0 1 2 3 4 5	ent s	0 1 2 3 tting ssible tting ssible tting ssible	OSA OSE OHE OHA	E104 A104 E105, OS E25K-ET A25K-ET E105-ET,	A105 , OSE ² , OSA ² OSA1	104-ET 104-ET	-		
		C p D	pen	pen setting 0 1 2 3 4 5 6	ent s	0 1 2 3 ssible tting ssible tting ssible tting ssible tting	OSA OSE OHE OHA OSE (Hei	E104 A104 E105, OS E25K-ET A25K-ET E105-ET, idenhain)	, OSE ⁻ , OSA ⁻ OSA1	104-ET 104-ET 05-ET	, RCN7	/23	De
		C p D	pen	pen setting 0 1 2 3 4 5 6 7 8	ent s	0 1 2 3 ssible tting ssible tting ssible tting ssible tting ssible	OSA OSE OHA OHA (Hei (Mits	E104 A104 E105, OS E25K-ET A25K-ET E105-ET, idenhain) ative posi subishi H	, OSE ² , OSA ² OSA1	104-ET 104-ET 05-ET etectior ndustri	, RCN7	23 MP typ	
		C p D	pen	pen setting 0 1 2 3 4 5 6 7	ent s	0 1 2 3 ssible tting ssible tting ssible tting ssible tting ssible ssible ssible	OSA OSE OHE OHA OSE (Heid Rela (Mits AT4 (Futa	E104 A104 E105, OS E25K-ET A25K-ET idenhain) ative posi subishi H subishi H (Mitsut taba)	, OSE , OSA OSA1 ition de leavy I oyo), F	104-ET 104-ET 05-ET etectior ndustri FME ty	, RCN7 n scale, ies) pe, FLE	23 MP typ	De
		C p D	pen	pen setting 0 1 2 3 4 5 6 7 8	ent s	0 1 2 3 tting ssible tting ssible tting ssible tting ssible tting ssible tting tting tting tting	OSA OSE OHA OSE (Hei (Mits AT4 (Futa AT3	E104 A104 E105, OS E25K-ET A25K-ET E105-ET, idenhain) ative posi subishi H I1 (Mitsut iaba) M22,AT34	GA105 , OSE ² , OSA ² OSA1 ition de leavy I oyo), F 3 (Mits	104-ET 104-ET 05-ET etectior ndustri FME ty sutoyo)	, RCN7 , scale, ies) pe, FLE	23 MP typ type	
		C p D	pen	pen setting 0 1 2 3 4 5 6 7 8 9	ent s	0 1 2 3 tting ssible tting ssible tting ssible tting ssible tting ssible tting ssible tting ssible tting tting tting tting	OSA OSE OHA OSE (Hei (Mits AT4 (Futa AT3	E104 A104 E105, OS E25K-ET A25K-ET idenhain) ative posi subishi H subishi H (Mitsut taba)	GA105 , OSE ² , OSA ² OSA1 ition de leavy I oyo), F 3 (Mits	104-ET 104-ET 05-ET etectior ndustri FME ty sutoyo)	, RCN7 , scale, ies) pe, FLE	23 MP typ type	
		C p D	en	pen setting 0 1 2 3 4 5 6 7 8 9 A B	ent s	0 1 2 3 tting ssible tting ssible tting ssible tting ssible tting ssible tting ssible tting ssible tting ssible	OSA OSE OHE OHA OSE (Hei (Hei AT4 (Futa AT4 (Futa AT3 LC1	E104 A104 E105, OS E25K-ET A25K-ET E105-ET, idenhain) ative posi subishi H H (Mitsut iaba) 342,AT34 91M/491	GA105 , OSE ² , OSA ² OSA1 (Ition de leavy I oyo), F 3 (Mits M (He	104-ET 104-ET 05-ET o5-ET ndustri TME ty sutoyo) idenha	, RCN7 , scale, jes) pe, FLE , in), MD	723 MP type E type DS-B-HI	
		C p D	pen	pen setting 0 1 2 3 4 5 6 7 8 9 A	ent s	0 1 2 3 tting ssible tting ssible tting ssible tting ssible tting ssible tting ssible tting ssible tting ssible	OSA OSE OHE OHA OSE (Hei Rela (Mitt AT3 LC1 The	E104 A104 E105, OS E25K-ET A25K-ET E105-ET, idenhain) ative posi subishi H H (Mitsut taba) a42,AT34 91M/491	GA105 , OSE ² , OSA ² OSA1 ition de leavy I oyo), F 3 (Mits M (He	104-ET 104-ET 05-ET o5-ET mdustri "ME ty sutoyo) idenha	, RCN7 , RCN7 n scale, ies) pe, FLE , in), MD	223 MP type type DS-B-HI	
		C p D	pen	pen setting 0 1 2 3 4 5 6 7 8 9 A B	ent s	0 1 2 3 sting ssible tting ssible tting ssible tting ssible tting ssible tting ssible tting ssible tting ssible tting ssible tting ssible	OSA OSE OHE OHA OSE (Hei (Hei (Mits AT4 (Fut: AT3 LC1) The spee Whe	E104 A104 E105, OS E25K-ET A25K-ET E105-ET, idenhain) ative posi subishi H 11 (Mitsut aba) 342,AT34 91M/491 setting c ed/currer en the ma	A 105 , OSE , OSA OSA OSA (Mits M (He of the s	104-ET 104-ET 05-ET o5-ET sutoyo) idenha lave as hroniza	, RCN7 , scale, ies) pe, FLE , in), MD	223 MP type E type DS-B-HI DS-B-HI	٩
		C p D	pen	pen setting 0 1 2 3 4 5 6 7 8 9 A B C	ent s	0 1 2 3 ssible tting ssible tting ssible tting ssible tting ssible tting ssible tting ssible tting ssible tting ssible tting ssible tting ssible	OSA OSE OHE OHA OSE (Hei AT4 (Futa AT3 LC1 The speec Whe cont	E104 A104 E105, OS E25K-ET A25K-ET idenhain) ative posi subishi H I1 (Mitsut taba) A2,AT34 91M/491 e setting co ed/currer en the ma trol.	A105 , OSE , OSA OSA1 ition de leavy I oyo), F 3 (Mits M (He of the s at sync aster a	104-ET 104-ET 05-ET etectior ndustri -ME ty sutoyo) idenha lave as hroniza xis is th	, RCN7 n scale, es) pe, FLE , in), MD kis in th ation cc he sem	723 MP type E type DS-B-HI DS-B-HI Dontrol. i-closed	٩
		C p D	pen	pen setting 0 1 2 3 4 5 6 7 8 9 A B	ent s	0 1 2 3 tting ssible tting tting ssible tting ttin	OSA OSE OHE OHA OSE (Hei (Hei (Hei AT4 (Futa AT3 LC1) The spee cont The spee (Cur	E104 A104 E105, OS E25K-ET A25K-ET E105-ET, idenhain) ative posi subishi H 11 (Mitsut iaba) A2,AT34 91M/491 setting c ed/currer en the ma trol. setting c ed/currer en the ma trol.	GA105 , OSE , OSA OSA1 OSA1 ition de leavy I oyo), F 3 (Mits M (He of the s aster a of the s aster a chroniz	104-ET 104-ET 05-ET o5-ET o5-ET dustri TME ty sutoyo) idenha lave as hroniza xis is th lave as hroniza xis is th	, RCN7 , RCN7 pe, FLE , in), MD kis in th ation cc he sem kis in th ation cc he full-c	223 MP type E type DS-B-HI e ontrol. i-closed ie ontrol. closed of	२ ट
		C p D	pen	pen setting 0 1 2 3 4 5 6 7 8 9 A B C	ent s	0 1 2 3 ssible tting tting ssible tting tting tting ssible tting	OSA OSE OHE OHA OSE (Hei (Hei (Hei AT4 (Futa AT3 LC1) The spee cont The spee (Cur	E104 A104 E105, OS E25K-ET A25K-ET E105-ET, idenhain) ative posis subishi H 10 (Mitsut taba) A2,AT34 91M/491 esetting c ed/currer en the ma trol. setting c ed/currer en the ma	GA105 , OSE , OSA OSA1 OSA1 ition de leavy I oyo), F 3 (Mits M (He of the s aster a of the s aster a chroniz	104-ET 104-ET 05-ET o5-ET o5-ET dustri TME ty sutoyo) idenha lave as hroniza xis is th lave as hroniza xis is th	, RCN7 , RCN7 pe, FLE , in), MD kis in th ation cc he sem kis in th ation cc he full-c	223 MP type E type DS-B-HI e ontrol. i-closed ie ontrol. closed of	२ ट
		C p D	pen	pen setting 0 1 2 3 4 5 6 7 8 9 A B C D	ent s	0 1 2 3 tting ssible tting tting ssible tting tti	OSA OSE OHE OHA OSE (Hei (Hei (Hei AT4 (Futa AT3 LC1) The spee cont The spee (Cur	E104 A104 E105, OS E25K-ET A25K-ET E105-ET, idenhain) ative posi subishi H 11 (Mitsut iaba) A2,AT34 91M/491 setting c ed/currer en the ma trol. setting c ed/currer en the ma trol.	GA105 , OSE , OSA OSA1 OSA1 ition de leavy I oyo), F 3 (Mits M (He of the s aster a of the s aster a chroniz	104-ET 104-ET 05-ET o5-ET o5-ET dustri TME ty sutoyo) idenha lave as hroniza xis is th lave as hroniza xis is th	, RCN7 , RCN7 pe, FLE , in), MD kis in th ation cc he sem kis in th ation cc he full-c	223 MP type E type DS-B-HI e ontrol. i-closed ie ontrol. closed of	२ ट

No.	I	tems			Det	ails			Setting range
2226	SV026 OD2	Excessive error detection width during servo OFF	For the s SV023 (0	' is set, the	ting, refe	r to the ex	kplanati	on of	0 to 32767 (mm)
2227	SV027	Servo	F	E	D	С	В	A	9 8
2221	SSF1	function	aflt	zrn2		fse		ovs	
		selection 1	7	6	2	1 0			
			omr	zrn3	upc	vcnt			
			bit	Meanin	g when	"0" is set	:	Meaning w	/hen "1" is set
			0 1 2 2 4 5 5	Set the ex compensa 00: D 01: D 10: D 11: S Start torqu invalid Set the nu compensa 00: Ji 01: Ji 10: Ji 11: Ji ABS scale Machine e invalid Set the co (LMC2). 00: Lo 01: Lo 11: Set Set the co (OVS2). 00: O	ecution of ition. elay com elay com elay com elay com elay com etting pro- te compe- mber of ition. tter compe- tter compe- tt	changeove pensation pensation pensation pensation compensation compensation pensation pensation 1" in using pensation 1" in using pensation 1" in using pensation ion amoun ion amoun ing compen ing compen	er type of a change a change a change a type 2 Star va stion pu ation pu invalid 1 pulse 2 pulse 2 pulse 3 pulse g AT342 Ma va nt with s sation t ensation	of the speed eover invali- eover type f art torque c lid Ises of the j s s 2, AT343, L achine end lid SV016 (LM0 stop ype 1 a type 2 SV031 (OVS a stop	d loop delay d 1 ompensation
				10: O	vershoot	ing compe ing compe ing compe	ensatior	n type 2	
				00: Adopti 11: Adopti Set to "1". Adoptive f	at a time) start				
2228	SV028		Not used	. Set to "0"	-				0
2229	SV029	Speed at the change of speed loop gain	traverse, Set the s use this v	se is bother etc, lower t peed at whi with SV006 t using, set	anges, and	0 to 9999 (r/min)			

No.		Items	Details	Setting range
2230			ower order 8bits are used for different functions. " = (Icx*256) + IVC	0 to 32767
	SV030 IVC (Low order)	Voltage dead time compensa- tion	When 100% is set, the voltage equivalent to the logical non-energized time will be compensated. When "0" is set, a 100% compensation will be performed. Adjust in increments of 10% from the default value 100%. If increased too much, vibration or vibration noise may be generated.	0 to 255 (%)
	SV030 Icx (High order)	Current bias 1	Set to "0" as a standard. Use this in combination with SV040 and the high order 8bits of SV045.	0 to 127
2231	231 SV031 Overshooting	Overshooting compensation 1	Set this if overshooting occurs during positioning. This compensates the motor torque during positioning. This is valid only when the overshooting compensation SV027 (SSF1/ovs) is selected.	-1 to 100 (Stall [rated] current %)
			Type 1: When SV027 (SSF1)/ bitB, A (ovs)=01 Set the compensation amount based on the motor's stall current. This compensates overshooting that occurs during pulse feeding. Normally, use Type 2.	
			Type 2: When SV027 (SSF1)/ bitB, A (ovs)=10 Set the compensation amount based on the motor's stall current. Increase by 1% and determine the amount that overshooting doesn't occur. In Type 2, compensation during the feed forward control during circular cutting won't be performed.	
			Type 3: When SV027 (SSF1)/ bitB, A (ovs)=11 Use this to perform the overshooting compensation during circular cutting or the feed forward control. The setting method is the same in Type 2.	
			When you wish different compensation amount depending on the direction When SV042 (OVS2) is "0", compensate with the value of SV031 (OVS1) in both of the + and -directions. If you wish to change the compensation amount depending on the command direction, set this and SV042 (OVS2). (SV031: + direction, SV042: - direction. However, the directions may be opposite depending on other settings.) When "-1" is set, the compensation won't be performed in the direction of the command.	
2232	SV032 TOF	Torque offset	Set the unbalance torque of vertical axis and inclined axis.	-100 to 100 (Stall [rated] current %)

No.		Items			Deta	ails				Se	etting	range	
2233	SV033	Servo	F	E	D	С	E	3	А	9		8	
	SSF2	function		d	os					hvx	5	SVX	
		selection 2	7	6	5	4	3	3	2	1		0	
				nfd2		nf3			nfd1		Z	zck	
			bit		ng when						when "1" is set		
			0 zck						eck inv	alid			
			1		•			•	,				
			2 nfd1							101	110	111	
			3	Depth (dB)	Infntly deep	18.1 -12	2.0	-8.5	-6.0	-4.1	-2.5	-1.2	
				Deep←							→ Sha	llow	
			4 nf3	Notch filte	er 3 stop			Not	ch filter	3 start	start (1125Hz)		
			5	Set the op					filter 2 (SV046)			
		6	6 nfd2	Value			-	011	100	101	110	111	
			7	Depth (dB)	Infntly deep	18.1 -12	2.0	-8.5	-6.0	-4.1	-2.5	-1.2	
				Deep←							\rightarrow Sł	nallow	
			8 svx	Set the pe (Only for I			of the	serv	o contro	ol.			
			9 hvx	00: B	y current	loop gair	า						
					IDS-B-Vx				selected	k			
					igh gain r								
				11: H	igh gain r	node sel	ected	1					
			A										
			В										
			C D		/IP scale a	absolute		ion d	etection	, offset	dema	nd	
			dos	5 1									
			E	 Specified speed signal output to F : Setting prohibited 									
			(Note) Se	ote) Set to "0" for bits with no particular description.									

No.	I	tems			Deta	ails			Setti	ng range	
2234	SV034	Servo	F	E	D	С	В	А	9	8	
	SSF3	function		OV	rsn						
		selection 3	7	6	5	4	3	2	1	0	
				os2	zeg			mohn	has2	has1	
			bit Meaning when "0" is set					eaning w		is set	
			0 has1	0 has1 (Except for HC)				ontrol 1 v ligh accel rt)		ate	
			1 has2	1 bas2 Setting for normal use				ontrol 2 v vershoot		ort)	
			2 moh	moh MDS-B-HR motor thermal			MDS-E	3-HR mot	or therma	al ignored	
			3								
			4 5 zeg	Z phase no detection (Setting for	-				e edge detection en SV027/bit6=1)		
			6 os2	Setting for			Oversp change	beed dete eover	ection leve	el	
			8								
			9								
			A								
			В								
			C D E ovsn	 3 in increments of 2µm at a time. ovsn In the feed forward control, the non-sensition droop is set and overshooting of 				ensitive b g of the n	and of the	e model	
				Set the sar	me value	as the sta	andard S	SV040.			
			(Note) Se	et to "0" for I	bits with r	no particu	lar descr	ription.			

	Items									
SV035	Servo	F	E D	С	В	А	9	8		
SSF4	function	clt	clG1		cl2n	clet	c	tq		
	selection 4	T		4			1	0		
		ckab iup tdt								
		bit			Me	eaning w	vhen "1"	is set		
		0 1 2 3 4 5 6 iup 7 ckab 8 cltq 9 A clet	Td creation time setting Set to "0". (For machine tool builder adjustment) Set to "1" when using any of motors from HC152 to from HC153 to HC453. Setting for normal use No signal 2 (Alarm detection Set the retracting torque for collision detection in remaximum torque of the motor. 00: 100% 01: 90% 10: 80% (Standard)					special ct to the : 70% peak of s		
				B cl2n		method 2	monito Collisi	or screen on detec		
		C D clG1 E F clt	Collision detection Set the collision de The G1 collision of When clG1=0, the feed won't function	tection lev detection le collision d	vel during evel=SV(etection The gr setting	g cutting f 060*clG1 method 2 uide valu	during of the S displaye	cutting SV059		
	SV035	SV035 Servo SSF4 function	SV035 SSF4 Servo function selection 4 F Clt 7 Ckat 0 1 2 4 1 2 4 tdt 3 4 5 6 6 iup 7 ckab 8 9 A cltq 9 C A 1 C 0 1 C 0 1 2 3 Cltq 1 C 0 0 ClG1 1 ClG1	SV035 Servo F E D selection 4 7 6 5 Ckab iup iup bit Meaning when " 0 Td creation time set 1 2 3 4 5 5 6 iup 8 cltq 9 00: 100% 01: 9 A clet 8 cltq 9 00: 100% 01: 9 A clet 8 clq 9 00: 100% 01: 9 A clet 8 clq 9 Collision detection valid 8 clq 9 Collision detection valid ClG1 The G1 collision detection valid ClG1 The G1 collision detection valid ClG1 The G1 collision detection valid	SV035 Servo F E D C SSF4 function clt clG1 iup 7 6 5 4 Ckab iup iup iup bit Meaning when "0" is set 0 1 Set to "0". (For machine tool 2 tdt 4 5 6 iup 6 iup 7 ckab 8 cltq 8 cltq 8 cltq 9 00: 100% 01: 90% A clet 8 clet 8 clet 9 collision detection method 1 9 clog 10 Collision detection method 1 11 Set the collision detection leventor 12 clG1 14 Set the collision detection leventor 15 clG1 16 clG1 17 clG1 18 cl2n 100 clG1=0, the collision detectio	SV035 Servo F E D C B SSF4 clt clG1 cl2n r 6 5 4 3 ckab iup tt bit Meaning when "0" is set Meaning when when when when when when when when	SV035 Servo function selection 4 F E D C B A 2 clt clG1 cl2n clet 7 6 5 4 3 2 ckab iup tdt bit Meaning when "0" is set Meaning w 0 1 7 6 5 4 3 2 2 ckab iup tdt Td cleation time setting Set to "0". (For machine tool builder adjustme 2 tdt 3 tdt 5 Set to "0". (For machine tool builder adjustme 2 tdt 5 Set to "1" when using any of motors from HC1 from HC153 to HC453. No signal 2 (Al detection 6 iup Set the retracting torque for collision detection maximum torque of the motor. No signal 2 (Al detection 8 cltq Set the retracting torque for collision detection maximum torque of the motor. No signal 2 (Al detection 9 00: 100% 01: 90% 10: 80% (Standar monitor screen A clet Setting for normal use The disturbanc the latest two s displayed in Mi monitor screen	SV035 SSF4 Servo function selection 4 F E D C B A 9 Clt cld clG1 cl2n clet cl cl<		

No.		Items			Deta	ils				Settin	g range	
2236	SV036	Power	F	E	D	С	В	А		9	8	
(PR)	PTYP	supply type			mp				rtyp			
			7	6	5	4	3	2		1	0	
						р	typ					
			bit			E	xplanati	ion				
			0	When the	CN4 conr				and the	powe	er supply	
			1	are conne	ected, setti	ng belov	w is nece	essary.		-		
			2		e the exter	rnal eme	ergency	stop fun	ction,	add 40)h.	
			3	Set- ting 0:	x 1x	2x	3x	4x	5x	6x7x	8x	
			ptyp	NO NO			CV-300					
			4	USE		ļ	CV-300					
			5 6	x1 x2	CV-110	CV-220					CR-10 CR-15	
			0 7	x2 x3		CV-220	/				CR-15 CR-22	
				x4 CV-	37						CR-37	
				x5	CV-150)		CV-450	CV-55	0		
				x6 CV-	·55	CV-260				ļ.	CR-55	
				x7			CV-370					
				x8 CV-							CR-75	
				x9	CV-185						CR-90	
				8	Set the re	generative	resisto	r type w	hen MD	S-A-CF	R is us	ed
			9	Set-	Regene	rative r	esistor		stance		bacity	
			rtyp	ting		del nar			lue		•	
			A	0	MDS-C1 regenera		etting wn	en using	j powe	rsupp	лу	
			В	1	GZG200		MJ	20	6Ω	8	0W	
				2	GZG300		MJ×2		6Ω		50W	
				3	MR-RB3				3Ω		WO	
				4	MR-RB5 GZG200		MLO		3Ω 70		DOW	
				5	GZG200				7Ω 7Ω		50W DOW	
				7	R-UNIT-				0Ω		DOW	
				8	R-UNIT-2				5Ω		00W	
				9	R-UNIT-:	3		1	5Ω	21	00W	
				A to F	No settin	g						
					t to "O"							
			D	Always se	et to 0.							
			Famp									
			E F									
			-									
	$ \rightarrow $	Load inertia	Set "the	motor inert				load		to 500	0	
2237	SV037			n roopoot to	the motor	^r inertia.			(%	6)		
2237	JL	scale	inertia" ir	•								
2237				•								
2237				V037 (JL) =								
2237			S	V037 (JL) =	JI+Jm Jm							
2237			S' Jrr	•	= <u>JI+Jm</u> Jm ertia	— *100						
2237	JL	scale	'S Jm J	V037 (JL) = n: Motor ind I: Motor ax	= JI+Jm Jm ertia kis convers	— *100 ion loac	l inertia	hine	0	to 900	0	
2237 2238			'S Jm J	V037 (JL) = n: Motor in l: Motor ax ribration fre	= JI+Jm Jm ertia kis convers	— *100 ion loac	l inertia	chine		to 900 Iz)	0	

No.		ltems	Details	Setting range		
2239	SV039 LMCD	Lost motion compensation timing	Set this when the lost motion compensation timing doest not match. Adjust by increasing the value by 10 at a time.	0 to 2000 (ms)		
2240			ower order 8bits are used for different functions. lcy*256) + LMCT	0 to 32767		
	SV040 LMCT (Low order)	Lost motion compensation non-sensitive band	Set the non-sensitive band of the lost motion compensation in the feed forward control. When "0" is set, the actual value that is set is 2µm. Adjust by increasing by 1µm at a time.	0 to 100 (μm)		
	SV040 Icy (High order)	Current bias 2	Normally, set to "40" if you use HC202 to HC902, HC203 to HC703. Use this in combination with SV030 and the high order 8bits of SV045.	0 to 127		
2241	SV041 LMC2	Lost motion compensation 2	-1 to 200 (Stall [rated] current %)			
2242	SV042 OVS2	Overshooting compensation 2	-1 to 100 (Stall [rated] current %)			
2243	SV043 OBS1	Disturbance observer filter frequency	Set the disturbance observer filter band. Set to "100" as a standard. To use the disturbance observer, also set SV037 (JL) and SV044 (OBS2). When not using, set to "0".	0 to 1000 (rad/s)		
2244	SV044 OBS2	Disturbance observer gain	Set the disturbance observer gain. The standard setting is "100" to "300". To use the disturbance observer, also set SV037 (JL) and SV043 (OBS1). When not using, set to "0".	0 to 500 (%)		
2245			ower order 8bits are used for different functions. Icy*256) + LMCT	0 to 32767		
	SV045 TRUB (Low order)	Frictional torque	When you use the collision detection function, set the frictional torque.	0 to 100 (Stall [rated] current %)		
	SV045 Ib1 (High order)	Current bias 3	Set to "0" as a standard. Use this in combination with SV030 and the high order 8bits of SV040.	0 to 127		
2246	SV046 FHz2	Notch filter frequency 2	Set the vibration frequency to suppress if machine vibration occurs. (Valid at 36 or more) When not using, set to "0".	0 to 9000 (Hz)		
2247	SV047 EC	Inductive voltage compensation gain	ictive Set the inductive voltage compensation gain. Set the age "100" as a standard. Ipensation If the current FB peak exceeds the current command			
2248	SV048 EMGrt	Vertical axis drop prevention time	Input a length of time to prevent the vertical axis from dropping by delaying Ready OFF until the brake works when the emergency stop occurs. Increase the setting by 100ms at a time and set the value where the axis does not drop.	0 to 20000 (ms)		

No.		Items	Details	Setting range
2249	SV049 PGN1sp	Position loop gain 1 in spindle	Set the position loop gain during the spindle synchronous control (synchronous tapping, synchronous control with spindle/C axis).	1 to 200 (rad/s)
		synchronous control	Set the same value as the value of the spindle parameter, position loop gain in synchronous control. When performing the SHG control, set this with SV050 (PGN2sp) and SV058 (SHGCsp).	
2250	PGN2sp	Position loop gain 2 in spindle synchronous control	Set this with SV049 (PGN1sp) and SV058 (SHGCsp) if you wish to perform the SHG control in the spindle synchronous control (synchronous tapping, synchronous control with spindle/C axis). When not performing the SHG control, set to "0".	0 to 999 (rad/s)
2251	SV051 DFBT	Dual feed back control time constant	Set the control time constant in dual feed back. When "0" is set, the actual value that is set is 1ms. The higher the time constant is, the closer it gets to the semi-closed control, so the limit of the position loop gain is raised.	0 to 9999 (ms)
2252	SV052 DFBN	Dual feedback control non-sensitive band	Set the non-sensitive band in the dual feedback control. Set to "0" as a standard.	0 to 9999 (μm)
2253	SV053 OD3	Excessive error detection width in special control	Set the excessive error detection width when servo ON in a special control (initial absolute position setting, stopper control, etc.). If "0" is set, excessive error detection won't be performed when servo ON during a special control.	0 to 32767 (mm)

No.		Items	Details	Setting range
2254	When SV0	35 (SSF4)/ bitF (-1 to 32767 (mm)
	SV054 ORE	Overrun detection width in closed loop control	Set the overrun detection width in the full-closed loop control. If the gap between the motor end detector and the linear scale (machine end detector) exceeds the value set by this parameter, it is judged to be overrun and Alarm 43 will be detected. When "-1" is set, the alarm detection won't be performed. When "0" is set, overrun is detected with a 2mm width.	
	When SV0	35 (SSF4)/ bitF (ckab)=1	0 to 32767
	The	ctions.	/IDS-C1-Vx. s and lower order 8bits are used for different 954" =(NSE*256)+ORE	
	SV054 ORE (Low order)	Overrun detection- width in closed loop control	Set the overrun detection width in the full-closed loop control. If the gap between the motor end detector and the linear scale (machine end detector) exceeds the value set by this parameter, it is judged to be overrun and Alarm 43 will be detected. When "255" is set, the alarm detection won't be performed. When "0" is set, overrun is detected with a 2mm width.	0 to 255 (mm)
	SV054 NSE (High order)	Special detection width for No signal 2	When SV035 (SSF4)/ bitF (ckab) =1, this setting is valid. Set the special detection width for No signal 2 (Alarm 21). When "0" is set, overrun is detected with a 15µm width.	0 to 127 (μm)
2255	SV055 EMGx	Max. gate off delay time after emergency stop	Set a length of time from the point when the emergency stop is input to the point when READY OFF is compulsorily executed. Normally, set the same value as the absolute value of SV056. In preventing the vertical axis from dropping, the gate off is delayed for the length of time set by SV048 if SV055's value is smaller than that of SV048.	0 to 20000 (ms)
2256	SV056 EMGt	Deceleration time constant at emergency stop	In the vertical axis drop prevention time control, set the time constant used for the deceleration control at emergency stop. Set a length of time that takes from rapid traverse rate (rapid) to stopping. Normally, set the same value as the rapid traverse acceleration/deceleration time constant. When executing the synchronous operation, put the minus sign to the settings of both of the master axis and slave axis.	-20000 to 20000 (ms)
2257	SV057 SHGC	SHG control gain	When performing the SHG control, set this with S003 (PGN1) and SV004 (PGN2). When not performing the SHG control, set to "0".	0 to 1200 (rad/s)

No.		Items	Details	Setting range
2258	SV058 SHGCsp	SHG control gain in spindle synchronous control	Set this with SV049 (PGN1sp) and SV050 (PGN2sp) if you wish to perform the SHG control in the spindle synchronous control (synchronous tapping, synchronous control with spindle/C axis). When not performing the SHG control, set to "0".	0 to 1200 (rad/s)
2259	SV059 TCNV	Collision detection torque estimating gain	Set the torque estimating gain when using the collision detection function. After setting as SV035/bitF(clt)=1 and performing acceleration/deceleration, set the value displayed in MPOS of the NC servo monitor screen. Set to "0" when not using the collision detection function.	-32768 to 32767
2260	SV060 TLMT	Collision detection level	When using the collision detection function, set the collision detection level during the G0 feeding. If "0" is set, none of the collision detection function will work.	0 to 999 (Stall [rated] current %)
2261	SV061 DA1NO	D/A output channel 1 data No.	Input the data number you wish to output to D/A output channel. In the case of MDS-C1-V2, set the axis on the side to	-1 to 127
2262	SV062 DA2NO	D/A output channel 2 data No.	which the data will not be output to "-1".	
2263	SV063 DA1MPY	D/A output channel 1 output scale	Set the scale with a 1/256 unit. When "0" is set, output is done with the standard output unit.	-32768 to 32767 (Unit: 1/256)
2264	SV064 DA2MPY	D/A output channel 2 output scale		
2265	SV065 TLC	Tool end compensation spring constant	Set the spring constant of the tool end compensation. In the semi-closed loop control, the tool end compensation amount is calculated with the following equation.	-32768 to 32767
			Compensation amount= F (mm/min) ² *SV065 R (mm)*10 ⁹ (µm)	
			F: Commanded speed R: Radius	
			When not using, set to "0".	

(2) Initial setting value

(a) HC**/HC**R series

N	lotor	HC 52	HC 102	HC 152	HC 202	HC 352	H 45	-	H 70		HC 902
	ve unit pacity	05	10	20	20	35	45s	45	70s	70	90
SV001	PC1	-	-	-	-	-	-	-	-	-	-
SV002	PC2	-	-	-	-	-	-	-	-	-	-
SV003	PGN1	47	47	47	47	47	47	47	47	47	47
SV004	PGN2	0	0	0	0	0	0	0	0	0	0
SV005	VGN1	200	200	200	200	200	200	200	200	200	200
SV006	VGN2	0	0	0	0	0	0	0	0	0	0
SV007	VIL	0	0	0	0	0	0	0	0	0	0
SV008	VIA	1364	1364	1364	1364	1364	1364	1364	1364	1364	1364
SV009	IQA	4096	4096	4096	4096	4096	4096	4096	4096	4096	4096
SV010	IDA	4096	4096	4096	4096	4096	4096	4096	4096	4096	4096
SV011	IQG	768	768	768	768	768	768	768	768	768	768
SV012	IDG	768	768	768	768	768	768	768	768	768	768
SV013	ILMT	500	500	500	500	500	500	500	500	500	500
SV014	ILMTsp	500	500	500	500	500	500	500	500	500	500
SV015	FFC	0	0	0	0	0	0	0	0	0	0
SV016	LMC1	0	0	0	0	0	0	0	0	0	0
SV017	SPEC	0000	0000	0000	0000	0000	1000	0000	1000	0000	0000
SV018	PIT	-	-	-	-	-	-	-	-	-	-
SV019	RNG1	-	-	-	-	-	-	-	-	-	-
SV020	RNG2	-	-	-	-	-	-	-	-	-	-
SV021	OLT	60	60	60	60	60	60	60	60	60	60
SV022	OLL	150	150	150	150	150	150	150	150	150	150
SV023	OD1	6	6	6	6	6	6	6	6	6	6
SV024	INP	50	50	50	50	50	50	50	50	50	50
SV025	MTYP	xxB0	xxB1	xxB2	xxB3	xxB4	xx95	xxB5	xx96	xxB6	xxB7
SV026	OD2	6	6	6	6	6	6	6	6	6	6
SV027	SSF1	4000	4000	4000	4000	4000	4000	4000	4000	4000	4000
SV028		0	0	0	0	0	0	0	0	0	0
SV029	VCS	0	0	0	0	0	0	0	0	0	0
SV030	IVC	0	0	0	0	0	0	0	0	0	0
SV031	OVS1	0	0	0	0	0	0	0	0	0	0
SV032	TOF	0	0	0	0	0	0	0	0	0	0

Μ	otor	HC 52	HC 102	HC 152	HC 202	HC 352	H 45		H 70	C)2	HC 902
	ve unit pacity	05	10	20	20	35	45s	45	70s	70	90
SV033	SSF2	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000
SV034	SSF3	0003	0003	0003	0003	0003	0003	0003	0003	0003	0003
SV035	SSF4	0000	0000	0040	0040	0040	0040	0040	0040	0040	0000
SV036	PTYP	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000
SV037	JL	0	0	0	0	0	0	0	0	0	0
SV038	FHz1	0	0	0	0	0	0	0	0	0	0
SV039	LMCD	0	0	0	0	0	0	0	0	0	0
SV040	LMCT	0	0	0	10240	10240	10240	10240	10240	10240	10240
SV041	LMC2	0	0	0	0	0	0	0	0	0	0
SV042	OVS2	0	0	0	0	0	0	0	0	0	0
SV043	OBS1	0	0	0	0	0	0	0	0	0	0
SV044	OBS2	0	0	0	0	0	0	0	0	0	0
SV045	TRUB	0	0	0	0	0	0	0	0	0	0
SV046	FHz2	0	0	0	0	0	0	0	0	0	0
SV047	EC	100	100	100	100	100	100	100	100	100	100
SV048	EMGrt	0	0	0	0	0	0	0	0	0	0
SV049	PGN1sp	15	15	15	15	15	15	15	15	15	15
SV050	PGN2sp	0	0	0	0	0	0	0	0	0	0
SV051	DFBT	0	0	0	0	0	0	0	0	0	0
SV052	DFBN	0	0	0	0	0	0	0	0	0	0
SV053	OD3	0	0	0	0	0	0	0	0	0	0
SV054	ORE	0	0	0	0	0	0	0	0	0	0
SV055	EMGx	0	0	0	0	0	0	0	0	0	0
SV056	EMGt	0	0	0	0	0	0	0	0	0	0
SV057	SHGC	0	0	0	0	0	0	0	0	0	0
SV058	SHGCsp	0	0	0	0	0	0	0	0	0	0
SV059	TCNV	0	0	0	0	0	0	0	0	0	0
SV060	TLMT	0	0	0	0	0	0	0	0	0	0
SV061	DA1NO	0	0	0	0	0	0	0	0	0	0
SV062	DA2NO	0	0	0	0	0	0	0	0	0	0
SV063	DA1MPY	0	0	0	0	0	0	0	0	0	0
SV064	DA2MPY	0	0	0	0	0	0	0	0	0	0
SV065	TLC	0	0	0	0	0	0	0	0	0	0

м	otor	HC 53	HC 103	HC 153	HC 203	H 35		H 45		HC 703
	/e unit bacity	05	10	20	35	45s	45	70s	70	90
SV001	PC1	-	-	-	-	-	-	-	-	-
SV002	PC2	-	-	-	-	-	-	-	-	-
SV003	PGN1	47	47	47	47	47	47	47	47	47
SV004	PGN2	0	0	0	0	0	0	0	0	0
SV005	VGN1	200	200	200	200	200	200	200	200	200
SV006	VGN2	0	0	0	0	0	0	0	0	0
SV007	VIL	0	0	0	0	0	0	0	0	0
SV008	VIA	1364	1364	1364	1364	1364	1364	1364	1364	1364
SV009	IQA	4096	4096	4096	4096	4096	4096	4096	4096	4096
SV010	IDA	4096	4096	4096	4096	4096	4096	4096	4096	4096
SV011	IQG	768	768	768	768	768	768	768	768	768
SV012	IDG	768	768	768	768	768	768	768	768	768
SV013	ILMT	500	500	500	500	500	500	500	500	500
SV014	ILMTsp	500	500	500	500	500	500	500	500	500
SV015	FFC	0	0	0	0	0	0	0	0	0
SV016	LMC1	0	0	0	0	0	0	0	0	0
SV017	SPEC	0000	0000	0000	0000	1000	0000	1000	0000	0000
SV018	PIT	-	-	-	-	-	-	-	-	-
SV019	RNG1	-	-	-	-	-	-	-	-	-
SV020	RNG2	-	-	-	-	-	-	-	-	-
SV021	OLT	60	60	60	60	60	60	60	60	60
SV022	OLL	150	150	150	150	150	150	150	150	150
SV023	OD1	6	6	6	6	6	6	6	6	6
SV024	INP	50	50	50	50	50	50	50	50	50
SV025	MTYP	xxC0	xxC1	xxC2	xxC3	xxA4	xxC4	xxA5	xxC5	xxC6
SV026	OD2	6	6	6	6	6	6	6	6	6
SV027	SSF1	4000	4000	4000	4000	4000	4000	4000	4000	4000
SV028		0	0	0	0	0	0	0	0	0
SV029	VCS	0	0	0	0	0	0	0	0	0
SV030	IVC	0	0	0	0	0	0	0	0	0
SV031	OVS1	0	0	0	0	0	0	0	0	0
SV032	TOF	0	0	0	0	0	0	0	0	0

м	otor	HC 53	HC 103	HC 153	HC 203	H 35		H 45		HC 703
	/e unit bacity	05	10	20	35	45s	45	70s	70	90
SV033	SSF2	0000	0000	0000	0000	0000	0000	0000	0000	0000
SV034	SSF3	0003	0003	0003	0003	0003	0003	0003	0003	0003
SV035	SSF4	0000	0000	0040	0040	0040	0040	0040	0040	0000
SV036	PTYP	0000	0000	0000	0000	0000	0000	0000	0000	0000
SV037	JL	0	0	0	0	0	0	0	0	0
SV038	FHz1	0	0	0	0	0	0	0	0	0
SV039	LMCD	0	0	0	0	0	0	0	0	0
SV040	LMCT	0	0	0	10240	10240	10240	10240	10240	10240
SV041	LMC2	0	0	0	0	0	0	0	0	0
SV042	OVS2	0	0	0	0	0	0	0	0	0
SV043	OBS1	0	0	0	0	0	0	0	0	0
SV044	OBS2	0	0	0	0	0	0	0	0	0
SV045	TRUB	0	0	0	0	0	0	0	0	0
SV046	FHz2	0	0	0	0	0	0	0	0	0
SV047	EC	100	100	100	100	100	100	100	100	100
SV048	EMGrt	0	0	0	0	0	0	0	0	0
SV049	PGN1sp	15	15	15	15	15	15	15	15	15
SV050	PGN2sp	0	0	0	0	0	0	0	0	0
SV051	DFBT	0	0	0	0	0	0	0	0	0
SV052	DFBN	0	0	0	0	0	0	0	0	0
SV053	OD3	0	0	0	0	0	0	0	0	0
SV054	ORE	0	0	0	0	0	0	0	0	0
SV055	EMGx	0	0	0	0	0	0	0	0	0
SV056	EMGt	0	0	0	0	0	0	0	0	0
SV057	SHGC	0	0	0	0	0	0	0	0	0
SV058	SHGCsp	0	0	0	0	0	0	0	0	0
SV059	TCNV	0	0	0	0	0	0	0	0	0
SV060	TLMT	0	0	0	0	0	0	0	0	0
SV061	DA1NO	0	0	0	0	0	0	0	0	0
SV062	DA2NO	0	0	0	0	0	0	0	0	0
SV063	DA1MPY	0	0	0	0	0	0	0	0	0
SV064	DA2MPY	0	0	0	0	0	0	0	0	0
SV065	TLC	0	0	0	0	0	0	0	0	0

N	lotor	HC 103R	HC 153R	HC 203R	HC 353R
	ive unit pacity	10	10	20	35
SV001	PC1	-	-	-	-
SV002	PC2	-	-	-	-
SV003	PGN1	33	33	33	33
SV004	PGN2	0	0	0	0
SV005	VGN1	15	15	20	40
SV006	VGN2	0	0	0	0
SV007	VIL	0	0	0	0
SV008	VIA	1364	1364	1364	1364
SV009	IQA	4096	4096	4096	4096
SV010	IDA	4096	4096	4096	4096
SV011	IQG	256	256	256	256
SV012	IDG	512	512	512	512
SV013	ILMT	500	500	500	500
SV014	ILMTsp	500	500	500	500
SV015	FFC	0	0	0	0
SV016	LMC1	0	0	0	0
SV017	SPEC	0000	0000	0000	0000
SV018	PIT	-	-	-	-
SV019	RNG1	-	-	-	-
SV020	RNG2	-	-	-	-
SV021	OLT	60	60	60	60
SV022	OLL	150	150	150	150
SV023	OD1	6	6	6	6
SV024	INP	50	50	50	50
SV025	MTYP	xxE1	xxE2	xxE3	xxE4
SV026	OD2	6	6	6	6
SV027	SSF1	4000	4000	4000	4000
SV028		0	0	0	0
SV029	VCS	0	0	0	0
SV030	IVC	0	0	0	0
SV031	SV031 OVS1		0	0	0
SV032	TOF	0	0	0	0

Ν	lotor	HC 103R	HC 153R	HC 203R	HC 353R
	ve unit pacity	10	10	20	35
SV033	SSF2	0200	0200	0200	0200
SV034	SSF3	0000	0000	0000	0000
SV035	SSF4	0000	0000	0000	0000
SV036	PTYP	0000	0000	0000	0000
SV037	JL	0	0	0	0
SV038	FHz1	0	0	0	0
SV039	LMCD	0	0	0	0
SV040	LMCT	0	0	0	0
SV041	LMC2	0	0	0	0
SV042	OVS2	0	0	0	0
SV043	OBS1	0	0	0	0
SV044	OBS2	0	0	0	0
SV045	TRUB	0	0	0	0
SV046	FHz2	0	0	0	0
SV047	EC	100	100	100	100
SV048	EMGrt	0	0	0	0
SV049	PGN1sp	15	15	15	15
SV050	PGN2sp	0	0	0	0
SV051	DFBT	0	0	0	0
SV052	DFBN	0	0	0	0
SV053	OD3	0	0	0	0
SV054	ORE	0	0	0	0
SV055	EMGx	0	0	0	0
SV056	EMGt	0	0	0	0
SV057	SHGC	0	0	0	0
SV058	SHGCsp	0	0	0	0
SV059	TCNV	0	0	0	0
SV060	TLMT	0	0	0	0
SV061	DA1NO	0	0	0	0
SV062	DA2NO	0	0	0	0
SV063	DA1MPY	0	0	0	0
SV064	DA2MPY	0	0	0	0
SV065	TLC	0	0	0	0

(b) HA**N series

N	lotor	HA 40N	HA 80N	HA 100N	HA 200N	HA 300N	HA 700N	HA 900N
	ve unit pacity	05	10	20	35	45	70	90
SV001	PC1	-	-	-	-	-	-	-
SV002	PC2	-	-	-	-	-	-	-
SV003	PGN1	33	33	33	33	33	25	25
SV004	PGN2	0	0	0	0	0	0	0
SV005	VGN1	150	150	150	150	150	250	250
SV006	VGN2	0	0	0	0	0	0	0
SV007	VIL	0	0	0	0	0	0	0
SV008	VIA	1364	1364	1364	1364	1364	1364	1364
SV009	IQA	4096	4096	4096	4096	4096	4096	4096
SV010	IDA	4096	4096	4096	4096	4096	4096	4096
SV011	IQG	768	768	768	768	768	768	768
SV012	IDG	768	768	768	768	768	768	768
SV013	ILMT	500	500	500	500	500	500	500
SV014	ILMTsp	500	500	500	500	500	500	500
SV015	FFC	0	0	0	0	0	0	0
SV016	LMC1	0	0	0	0	0	0	0
SV017	SPEC	0000	0000	0000	0000	0000	0000	0000
SV018	PIT	-	-	-	-	-	-	-
SV019	RNG1	-	-	-	-	-	-	-
SV020	RNG2	-	-	-	-	-	-	-
SV021	OLT	60	60	60	60	60	60	60
SV022	OLL	150	150	150	150	150	150	150
SV023	OD1	6	6	6	6	6	6	6
SV024	INP	50	50	50	50	50	50	50
SV025	MTYP	xx00	xx01	xx02	xx03	xx04	xx05	xx06
SV026	OD2	6	6	6	6	6	6	6
SV027	SSF1	4000	4000	4000	4000	4000	4000	4000
SV028		0	0	0	0	0	0	0
SV029	VCS	0	0	0	0	0	0	0
SV030	IVC	0	0	0	0	0	0	0
SV031	OVS1	0	0	0	0	0	0	0
SV032	TOF	0	0	0	0	0	0	0

I	Motor	HA 40N	HA 80N	HA 100N	HA 200N	HA 300N	HA 700N	HA 900N
	ive unit apacity	05	10	20	35	45	70	90
SV033	SSF2	0000	0000	0000	0000	0000	0000	0000
SV034	SSF3	0000	0000	0000	0000	0000	0000	0000
SV035	SSF4	0000	0000	0000	0000	0000	0000	0000
SV036	PTYP	0000	0000	0000	0000	0000	0000	0000
SV037	JL	0	0	0	0	0	0	0
SV038	FHz1	0	0	0	0	0	0	0
SV039	LMCD	0	0	0	0	0	0	0
SV040	LMCT	0	0	0	0	0	0	0
SV041	LMC2	0	0	0	0	0	0	0
SV042	OVS2	0	0	0	0	0	0	0
SV043	OBS1	0	0	0	0	0	0	0
SV044	OBS2	0	0	0	0	0	0	0
SV045	TRUB	0	0	0	0	0	0	0
SV046	FHz2	0	0	0	0	0	0	0
SV047	EC	100	100	100	100	100	100	100
SV048	EMGrt	0	0	0	0	0	0	0
SV049	PGN1sp	15	15	15	15	15	15	15
SV050	PGN2sp	0	0	0	0	0	0	0
SV051	DFBT	0	0	0	0	0	0	0
SV052	DFBN	0	0	0	0	0	0	0
SV053	OD3	0	0	0	0	0	0	0
SV054	ORE	0	0	0	0	0	0	0
SV055	EMGx	0	0	0	0	0	0	0
SV056	EMGt	0	0	0	0	0	0	0
SV057	SHGC	0	0	0	0	0	0	0
SV058	SHGCsp	0	0	0	0	0	0	0
SV059	TCNV	0	0	0	0	0	0	0
SV060	TLMT	0	0	0	0	0	0	0
SV061	DA1NO	0	0	0	0	0	0	0
SV062	DA2NO	0	0	0	0	0	0	0
SV063	DA1MPY	0	0	0	0	0	0	0
SV064	DA2MPY	0	0	0	0	0	0	0
SV065	TLC	0	0	0	0	0	0	0

	otor	HA 43N	HA 83N	HA 93N	HA 103N	HA 203N	HA 303N	HA 703N	HA 053N	HA 13N	HA 23N	HA 33N
	e unit acity	05	10	20	35	45	70	90	01	01	03	03
SV001	PC1	-	-	-	-	-	-	-	-	-	-	-
SV002	PC2	-	-	-	-	-	-	-	-	-	-	-
SV003	PGN1	33	33	33	33	33	33	25	33	33	33	33
SV004	PGN2	0	0	0	0	0	0	0	0	0	0	0
SV005	VGN1	150	150	150	150	150	150	250	70	70	100	100
SV006		0	0	0	0	0	0	0	0	0	0	0
SV007		0	0	0	0	0	0	0	0	0	0	0
SV008	VIA	1364	1364	1364	1364	1364	1364	1364	1364	1364	1364	1364
SV009	IQA	4096	4096	4096	4096	4096	4096	4096	4096	4096	4096	4096
SV010	IDA	4096	4096	4096	4096	4096	4096	4096	4096	4096	4096	4096
SV011	IQG	768	768	768	768	768	768	768	768	768	768	768
SV012	IDG	768	768	768	768	768	768	768	768	768	768	768
SV013	ILMT	500	500	500	500	500	500	500	500	500	500	500
SV014	ILMTsp	500	500	500	500	500	500	500	500	500	500	500
SV015	FFC	0	0	0	0	0	0	0	0	0	0	0
SV016	LMC1	0	0	0	0	0	0	0	0	0	0	0
SV017	SPEC	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000
SV018	PIT	-	-	-	-	-	-	-	-	-	-	-
SV019	RNG1	-	-	-	-	-	-	-	-	-	-	-
SV020	RNG2	-	-	-	-	-	-	-	-	-	-	-
SV021	OLT	60	60	60	60	60	60	60	60	60	60	60
SV022	OLL	150	150	150	150	150	150	150	150	150	150	150
SV023	OD1	6	6	6	6	6	6	6	6	6	6	6
SV024	INP	50	50	50	50	50	50	50	50	50	50	50
SV025	MTYP	xx80	xx81	xx8A	xx82	xx83	xx84	xx85	xx8C	xx8D	xx8E	xx8F
SV026	OD2	6	6	6	6	6	6	6	6	6	6	6
SV027	SSF1	4000	4000	4000	4000	4000	4000	4000	4000	4000	4000	4000
SV028		0	0	0	0	0	0	0	0	0	0	0
SV029		0	0	0	0	0	0	0	0	0	0	0
SV030	IVC	0	0	0	0	0	0	0	0	0	0	0
SV031	OVS1	0	0	0	0	0	0	0	0	0	0	0
SV032	TOF	0	0	0	0	0	0	0	0	0	0	0

N	lotor	HA 43N	HA 83N	HA 93N	HA 103N	HA 203N	HA 303N	HA 703N	HA 053N	HA 13N	HA 23N	HA 33N
	ve unit pacity	05	10	20	35	45	70	90	01	01	03	03
SV033	SSF2	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000
SV034	SSF3	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000
SV035	SSF4	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000
SV036	PTYP	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000
SV037	JL	0	0	0	0	0	0	0	0	0	0	0
SV038	FHz1	0	0	0	0	0	0	0	0	0	0	0
SV039	LMCD	0	0	0	0	0	0	0	0	0	0	0
SV040	LMCT	0	0	0	0	0	0	0	0	0	0	0
SV041	LMC2	0	0	0	0	0	0	0	0	0	0	0
SV042	OVS2	0	0	0	0	0	0	0	0	0	0	0
SV043	OBS1	0	0	0	0	0	0	0	0	0	0	0
SV044	OBS2	0	0	0	0	0	0	0	0	0	0	0
SV045	TRUB	0	0	0	0	0	0	0	0	0	0	0
SV046	FHz2	0	0	0	0	0	0	0	0	0	0	0
SV047	EC	100	100	100	100	100	100	100	100	100	100	100
SV048	EMGrt	0	0	0	0	0	0	0	0	0	0	0
SV049	PGN1sp	15	15	15	15	15	15	15	15	15	15	15
SV050	PGN2sp	0	0	0	0	0	0	0	0	0	0	0
SV051	DFBT	0	0	0	0	0	0	0	0	0	0	0
SV052	DFBN	0	0	0	0	0	0	0	0	0	0	0
SV053	OD3	0	0	0	0	0	0	0	0	0	0	0
SV054	ORE	0	0	0	0	0	0	0	0	0	0	0
SV055	EMGx	0	0	0	0	0	0	0	0	0	0	0
SV056	EMGt	0	0	0	0	0	0	0	0	0	0	0
SV057	SHGC	0	0	0	0	0	0	0	0	0	0	0
SV058	SHGCsp	0	0	0	0	0	0	0	0	0	0	0
SV059	TCNV	0	0	0	0	0	0	0	0	0	0	0
SV060	TLMT	0	0	0	0	0	0	0	0	0	0	0
SV061	DA1NO	0	0	0	0	0	0	0	0	0	0	0
SV062	DA2NO	0	0	0	0	0	0	0	0	0	0	0
SV063	DA1MPY	0	0	0	0	0	0	0	0	0	0	0
SV064	DA2MPY	0	0	0	0	0	0	0	0	0	0	0
SV065	TLC	0	0	0	0	0	0	0	0	0	0	0

7.3 MDS-C1-Vx Standard Specification (MDS-B-Vx Compatible)

(1) Details for servo parameters

For parameters marked with a (PR) in the table, turn the NC power OFF after setting. After the power is turned ON again, the parameter is validated.

/! In the explanation on bits, set all bits not used, including blank bits, to "0".

No.		Items	Details	Setting range
2201 (PR)	SV001 PC1	Motor side gear ratio	For the rotary axis, set the total deceleration	1 to 32767
2202 (PR)	SV002 PC2	Machine side gear ratio	(acceleration) ratio. Even if the gear ratio is within the setting range, the electronic gears may overflow and cause an alarm.	1 to 32767
2203	SV003 PGN1	Position loop gain 1	Set the position loop gain. The standard setting is "33". The higher the setting value is, the more precisely the command can be followed and the shorter the positioning time gets, however, note that a bigger shock is applied to the machine during acceleration/deceleration. When using the SHG control, also set SV004 (PGN2) and SV057 (SHGC).	1 to 200 (rad/s)
2204	SV004 PGN2	Position loop gain 2	When using the SHG control, also set SV003 (PGN1) and SV057 (SHGC). When not using the SHG control, set to "0".	0 to 999 (rad/s)
2205	SV005 VGN1	Speed loop gain 1	Set the speed loop gain. Set this according to the load inertia size. The higher the setting value is, the more accurate the control will be, however, vibration tends to occur. If vibration occurs, adjust by lowering by 20 to 30%. The value should be determined to be 70 to 80% of the value at the time when the vibration stops.	1 to 999
2206	SV006 VGN2	Speed loop gain 2	If the noise is bothersome at high speed during rapid traverse, etc, lower the speed loop gain. As in the right figure, set the speed loop gain of the speed 1.2 times as fast as the motor's rated speed, and use this with SV029 (VCS). When not using, set to "0". VGN1 VGN2 0 VCS VLMT (Rated speed*1.2)	-1000 to 1000

No.		Items	Details	Setting range
2207	SV007 VIL	Speed loop delay compensation	Set this when the limit cycle occurs in the full-closed loop, or overshooting occurs in positioning. Select the control method with SV027 (SSF1)/bit1, 0 (vcnt). Normally, use "Changeover type 2". When you set this parameter, make sure to set the torque offset (SV032 (TOF)). When not using, set to "0".	0 to 32767
			No changeover When SV027 (SSF1)/ bit1, 0 (vcnt)=00 The delay compensation control is always valid.	
			Changeover type 1 When SV027 (SSF1)/ bit1, 0 (vcnt)=01 The delay compensation control works when the command from the NC is "0". Overshooting that occurs during pulse feeding can be suppressed.	
			Changeover type 2 When SV027 (SSF1)/ bit1, 0 (vcnt)=10 The delay compensation control works when the command from the NC is "0" and the position droop is "0". Overshooting or the limit cycle that occurs during pulse feeding or positioning can be suppressed.	
2208	SV008 VIA	Speed loop lead compensation	Set the gain of the speed loop integration control. The standard setting is "1364". During the SHG control, the standard setting is "1900". Adjust the value by increasing/decreasing it by about 100 at a time. Raise this value to improve contour tracking precision in high-speed cutting. Lower this value when the position droop vibrates (10 to 20Hz).	1 to 9999
2209	SV009 IQA	Current loop q axis lead compensation	Set the gain of current loop. As this setting is determined by the motor's electrical characteristics, the setting is fixed for each type of	1 to 20480
2210	SV010 IDA	Current loop d axis lead compensation	motor. Set the standard values for all the parameters depending on each motor type.	1 to 20480
2211	SV011 IQG	Current loop q axis gain		1 to 2560
2212	SV012 IDG	Current loop d axis gain		1 to 2560

No.		Items	Details	Setting range
2213	SV013 ILMT	Current limit value	Set the normal current (torque) limit value. (Limit values for both + and - direction.) When the value is "500" (a standard setting), the maximum torque is determined by the specification of the motor.	0 to 999 (Stall [rated] current %)
2214	SV014 ILMTsp	Current limit value in special control	Set the current (torque) limit value in a special control (initial absolute position setting, stopper control, etc). (Limit values for both of the + and - directions.) Set to "500" when not using.	0 to 999 (Stall [rated] current %)
2215	SV015 FFC	Acceleration rate feed forward gain	When a relative error in the synchronous control is large, apply this parameter to the axis that is delaying. The standard setting value is "0". For the SHG control, set to "100". To adjust a relative error in acceleration/deceleration, increase the value by 50 to 100 at a time.	0 to 999 (%)
2216	SV016 LMC1	Lost motion compensation 1	Set this when the protrusion (that occurs due to the non-sensitive band by friction, torsion, backlash, etc) at quadrant change is too large. This compensates the torque at quadrant change. This is valid only when the lost motion compensation (SV027 (SSF1/lmc)) is selected.	
			Type 1: When SV027 (SSF1)/ bit9, 8 (lmc)=01 Set the compensation amount based on the motor torque before the quadrant change. The standard setting is "100". Setting to "0" means the compensation amount is zero. Normally, use Type 2.	-1 to 200 (%)
			Type 2: When SV027 (SSF1)/ bit9, 8 (Imc)=10 Set the compensation amount based on the stall (rated) current of the motor. The standard setting is double of the friction torque. Setting to "0" means the compensation amount is zero.	-1 to 100 (Stall [rated] current %)
			When you wish different compensation amount depending on the direction When SV041 (LMC2) is "0", compensate with the value of SV016 (LMC1) in both of the + and -directions. If you wish to change the compensation amount depending on the command direction, set this and SV041 (LMC2). (SV016: + direction, SV041: - direction. However, the directions may be opposite depending on other settings.) When "-1" is set, the compensation won't be performed in the direction of the command.	

No.		Items				Deta	ils				Setti	ng range
2217	SV017	Servo		F	Е	D	С	В		А	9	8
(PR)	SPEC	specification									mpt3	mp
		selection		7	6	5	4	3		2	1	0
				abs		vdir	fdir	spw	W	seqh	dfbx	fdir2
				bit		ing wher eedback		et			when "1 back reve	
			0	fdir2	polarity	boubaok	orward			arity		
			1	dfbx		dback co	ntrol stop	C	Dua	al feedba	ack contro	
			2	seqh	READY	Servo Ol	N time no	ormal	spe	ed	vo ON tir	Ŭ
			3	spwv	Normal	mode			Hig mo		ervo sync	hronous
			4	fdir	Position polarity	feedbacl	c forward			sition fee arity	dback rev	verse
			5	vdir	Standar	d setting			Det		pole mo tallation ((B, D)	
			6							•	• • •	
			7	abs		ntal conti		h)			sition cor	
			9	mp mpt3		le 360P (le ABS de					20P (1mm BS detect	tion type 3
			A B									
			C D									
			E F									
			(Note	e) Set t	to "0" for	bits with	no particu	ular de	escr	iption.		
2218 (PR)	SV018 PIT	Ball screw pitch	Set tl	ne ball	screw pi	tch. Set	to "360" f	or the	e rot	ary axis.	1 to 32 ⁻ (mm/re	

No.		Items	Det	ails		Setting range
2219 (PR)	SV019 RNG1	Position detector resolution	In the case of the semi-close Set the same value as SV02 explanation of SV020.)			1 to 9999 (kp/rev)
			In the case of the full-closed Set the number of pulses per			1 to 9999 (kp/pit)
			Detector model name	R	esolution	SV019 setting
			OHE25K-ET, OHA25K-ET	100,000)(p/rev)	100
			OSE104-ET, OSA104-ET	100,000)(p/rev)	100
			OSE105-ET, OSA105-ET		00(p/rev)	1000
			Relative position detection scale		specification for each r	PIT/Resolution (μm)
			AT41 (Mitsutoyo)	1 (µm/p)	The same as SV018 (PIT)
			FME type, FLE type (Futaba)	manual detecto		PIT/Resolution (μm)
			MP type (Mitsubishi Heavy Industries)		specification for each r	PIT/Resolution (μm)
			AT342 (Mitsutoyo)	0.5 (µm	/p)	Twice as big as SV018 (PIT)
2220 (PR)	SV020 RNG2	Speed detector	Set the number of pulses per end detector.	one revo	olution of the moto	or 1 to 9999 (kp/rev)
		resolution	Detector model nam	ne	SV020 setting	
			Equipped to HA053, HA13 MDS-B-Vx)		10	
			OHE25K, OHA25K (Only fo MDS-B-Vx)	r	100	
			OSE104, OSA104		100	
			OSE105, OSA105		1000	
2221	SV021 OLT	Overload detection time constant	Set the detection time consta Set to "60" as a standard. (F adjustment.)		`	0). 1 to 999 (s)
2222	SV022 OLL	Overload detection level	Set the current detection leve respect to the stall (rated) cu standard. (For machine tool	rrent. Se	t to "150" as a) in 110 to 500 (Stall [rated] current %)
2223	SV023	Excessive	Set the excessive error deter	ction widt	h when servo ON	
	OD1	error detection	<standard setting="" value=""></standard>			(mm)
		width during		verse rat	e	
		servo ON		n/min) PGN1	—— /2 (mm)	
			When "0" is set, the excessiv performed.		etection will not b	e

No.		ltems		Details									Setting range				
2224	SV024 INP	In-position detection width	Se Th ac	et the ac le lower curacy g	cur the gets	acy re settii s, how	vever, the c	the ighe cycle	m er e t	achine. the position ime (setting ting is "50".			to 32 m)	2767	,		
2225	SV/025	Motor/		F		E	D			B	A		9		8		
2225 (PR)	SV025 MTYP	Motor/ Detector	1	•			pen		0			nt	<u> </u>		0		
(113)		type		-					,						•		
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		7		6	5		4	3	2		1		0		
										mtyp							
				bit						Explanati	ion						
				0	S	-	e motor typ	<u>e.</u>	1					1	- 1		
				1		Set- ting	0x	1x		2x	3х	4x	5x	6x	7x		
				2		x0	HA40N			HA50L	HA53L						
				3 mtyp)	x1	HA80N	ļ		HA100L	HA103L						
			.	4		x2	HA100N	-	-	HA200L	HA203L			1			
				5		x3	HA200N	-		HA300L	HA303L						
			-	6		x4	HA300N	-	-	HA500L	HA503L						
				7		x5	HA700N HA900N	_	-				<u> </u>	<u> </u>			
						x6 x7	HASUUN	İ	Ē	HA-LH11K2			l		1		
						x8			n den men	A-LH15K2			-				
						x9		1	-				İ				
						xA		-	1	HA150L	HA153L		1				
						хB		Í	, i den mer				Ì				
						xC											
						хD		J	ļ				ļ	ļ			
						xE											
						xF											
						Set- ting	8x	9x	A	x Bx	Cx	Dx	E	(Fx		
						x0	HA43N			HC52	HC53						
						x1	HA83N	İ	•••••	HC102		F	IC1)3R			
						x2	HA103N	<u> </u>		HC152	HC153	ŀ	HC15	53R			
						x3	HA203N	Ţ			HC203		IC2				
						x4	HA303N			••••••••;•••••••••••••••••••••••••••••	HC353		IC3				
						x5	HA703N				HC453		IC5(J3R			
						x6				••••••••;•••••••••••••••••••••••••••••	HC703						
						x7				HC902							
						x8 x9											
						xA	HA93N	Î									
						xB											
							HA053(N)										
						xD	HA13(N)	İ									
						хE	HA23N										
						xF	HA33N	Ĩ									
	1									(To be co	ntinued to	the	next	t pad	ae)		

No.		ltems	Details Setting rang						Setting range	
			(C	Cont	inuec	d fr	om the previ	ous page)		
				k	oit			Ex	planation	
				8					osition detector ty	
				9	ent				". In the case of the	
				A B			oop control, s	set the same v	alue for "pen" and	ent.
				С			pen setting	ent setting	Detector mo	
				D	pen		0	0	OHE25K (Only for MDS-B-Vx), OSE	104
				Е	pen		1	1	OHA25K (Önly fo MDS-B-Vx), OSA	A104
				F			2	2	OSE105, OSA10	
							3	3	Equipped to HAC (Only for MDS-B	
							4	Setting impossible	OHE25K-ET, OS	E104-ET
							5	Setting impossible	OHA25K-ET, OS	A104-ET
							6	Setting impossible	OSE105-ET, OS	A105-ET
							7	Setting impossible	Deletive position	datastian
							8	Setting impossible	Relative position scale, MP type (I Heavy Industries	Mitsubishi)
							9	Setting impossible	AT41 (Mitsutoyo FLE type (Futaba	
							А	Setting impossible	AT342 (Mitsutoy	0)
							В	Setting impossible		
							С	C (Current synchroni- zation)	The setting of the the speed/curren synchronization When the maste semi-closed cont	t control. r axis is the
							D	Setting impossible		
							E	Setting impossible		
							F	Setting impossible		
						<u> </u>				
2226	SV026 OD2	Excessive error detection width during	Fc S\	or th /02	e sta 3 (OE	nd 01)	ard setting, r	efer to the exp	when servo ON. planation of ection will not be	0 to 32767 (mm)
		servo OFF			med.					

No.		Items				Deta	ails			Settin	g range
2227	SV027	Servo		F	Е	D	С	В	А	9	8
	SSF1	function		aflt	zrn2	af	se		OVS	Imo	C
		selection 1		7	6	5	4	3	2	1	0
					zrn3	V	fct		upc	vcr	nt
				bit	Mear	ning whe	en "0" is	set	Meaning	when "1"	' is set
			0	vcnt	Set the	execution			pe of the sp		
				Vont		nsation.					
			1]					eover invalid eover type 1		
							ensation				
					11: Set	ting proh	nibited				
			2	upc		orque cor	npensatio	on	Start torque	e compen	sation
			3		invalid				valid		
					Set the	number	of comp	ensation	n pulses of t	he iitter	
			4	vfct		nsation.	or compt	noution		ine jitter	
			5				ensation i				
							ensation 1				
							ensation 2 ensation 3				
			6	zrn3	ABS sc	ci compe cale: Set	to "1" in u	sina AT	, 1342, AT343	3. LC191N	//491M.
			7	_							
			8					nount w	vith SV016 (LMC1) ar	nd
				Imc		(LMC2).		ation o	40.0		
			9	J			compens compens				
							compens				
					11: Set	ting proh	nibited	-	•		
			Α					nount w	/ith SV031 (OVS1) ar	nd
			В	OVS		(OVS2). ersbootir	ng compe	neation	ston		
				J			ig compe				
							ng compe				
							ng compe				
			C	afse		A	er sensiti	=		h:44 - 4	···· •)
			D E	zrn2	Set to '		er sensiti	vity incr	ease (Set 2	DITS at a t	ime)
			F	aflt		/e filter s	tops		Adoptive fil	ter starts	
							no particu				
2228	SV028			,	Set to "0"					0	
2229	SV029	Speed at the					high spee	ad durir	na ranid	0 to 999	9
2223	VCS	change of					d loop gai		iy iapiu	(r/min)	5
	vus	speed loop	Set t	he spee	ed at whi	ch the sp	eed loop	gain ch	nanges, and	```	
		gain					(Refer to	5 SV00	6.)		
		<u> </u>	Whe	n not us	sing, set	το "0".					

No.		Items	Details	Setting range
2230			nd lower order 8bits are used for different functions. 030" = (Icx*256) + IVC	0 to 32767
	SV030 IVC (Low order)	Voltage dead time compensation	When 100% is set, the voltage equivalent to the logical non-energized time will be compensated. When "0" is set, a 100% compensation will be performed. Adjust in increments of 10% from the default value 100%. If increased too much, vibration or vibration noise may be generated.	0 to 255 (%)
	SV030 Icx (High order)	Current bias 1	Set to "0" as a standard. Use this in combination with SV040 and the high order 8bits of SV045.	0 to 127
2231	SV031 OVS1	Overshooting compensation 1	Set this if overshooting occurs during positioning. This compensates the motor torque during positioning. This is valid only when the overshooting compensation SV027 (SSF1/ovs) is selected.	-1 to 100 (Stall [rated] current%)
			Type 1: When SV027 (SSF1)/ bitB, A (ovs)=01 Set the compensation amount based on the motor's stall current. This compensates overshooting that occurs during pulse feeding. Normally, use Type 2.	
			Type 2: When SV027 (SSF1)/ bitB, A (ovs)=10 Set the compensation amount based on the motor's stall current. Increase by 1% and determine the amount that overshooting doesn't occur. In Type 2, compensation during the feed forward control during circular cutting won't be performed.	
			Type 3: When SV027 (SSF1)/ bitB, A (ovs)=11 Use this to perform the overshooting compensation during circular cutting or the feed forward control. The setting method is the same in Type 2.	
			When you wish different compensation amount depending on the direction When SV042 (OVS2) is "0", compensate with the value of SV031 (OVS1) in both of the + and -directions. If you wish to change the compensation amount depending on the command direction, set this and SV042 (OVS2). (SV031: + direction, SV042: - direction. However, the directions may be opposite depending on other settings.) When "-1" is set, the compensation won't be performed in the direction of the command.	

No.	I	tems				Det	ails				Se	etting r	ange
2232	SV032 TOF	Torque offset	Se axi		balance t	orque of	vertical a	axis and	d incline	əd	(Sta) to 100 Il [rateo ent %)	
2233	SV033	Servo		F	Е	D	С	В	Α		9	8	
	SSF2	function selection 2			С	los					hvx	S	vx
				7	6	5	4	3	2		1	0	
					fł	זע2			r	nfd		z	ck
				bit	Меан	ning whe	en "0" is	set	Меа	aning	wher	1" is	set
			0	zck	Z phase	e check v	alid (Ala	rm 42)	Z pha	ise ch	ieck in	valid	
			1	nfd1	Set the	filter dep	th for No	otch filte	er 1 (SV	/038).			
			2		Value	000	001	010	011	100	101	110	111
			3		Depth (dB)	Infntly deep	-18.1	-12.0	-8.5	-6.0	-4.1	-2.5	-1.2
					Deep←						-	→ Shal	low
			4		Set the	operation	n frequei	ncy of N	lotch fil	ter 2.			
			5	fhz2	0: Inval	id	3: 1	750Hz		e	6: 375I	Ηz	
			6		1: 2250	Hz	4: 5	563Hz		7	7: 3211	Ηz	
			7		2: 1125	Hz	5: 4	450Hz		8	B to F:	281Hz	
			8 9	svx hvx	Set the MDS-C	performa 1-Vx)	ince mo	de of the	e servo	conti	rol. (C	only for	
			3		00: By (current lo	op gain						
					01: MD	S-B-Vx c	ompatibl	e mode	select	ed			
					10: Hig	h gain mo	ode sele	cted					
					11: Hig	h gain mo	ode sele	cted					
			A										
			B										
			С	-	-	signal out	-						.
			D	dos	0 :	MP sca signal	ale abso output	iute pos	Sition de	etectio	on, off	set den	nand
			Е		1 :	Specifi	ed spee	d signa	l output	t			
			F	<u> </u>	2 to F :	Setting	j prohibit	ted					
			(No	ote) Set	to "0" for	bits with	no partio	cular de	scriptic	on.			

No.		tems				Deta	ails			Sett	ing range
2234	SV034	Servo		F	Е	D	С	В	А	9	8
_	SSF3	function			OV	rsn					
		selection 3		7	6	5	4	3	2	1	0
				-	os2	zeg				has2	has1
							•				<u> </u>
			-	bit		-	"0" is set		Meaning		" is set
			0	has1	Setting for		lse		AS control		
					(Except fo	r HC)			IC: High a	cceleratio	n rate
			1	has2	Setting for	normalı	160		upport) AS control	2 valid	
				11032	(Except fo		130		IC: Oversł		(troggi
			2		(
			3								
			4								
			5	zeg	Z phase n	ormal ed	ge detect		phase rev etection	erse edge	e
					(Setting fo	r normal	use)		/alid only v √027/bit6=		
			6	os2	Setting for	normal u	lse		verspeed nangeover		level
			7						<u></u>		
l			8								
			9								
			A B								
			C		Set the no	n-sensitiv	ve hand c	of the o	vershootin	a comper	sation
			D		type 3 in ir					ig comper	Batton
				ovsn	In the feed					band of t	the model
			F		position di	roop is se	et, and ov	vershoo	oting of the		
					Set the sa	me value	as the st	tandard	I SV040.		
			(Not	e) Se	et to "0" for l	bits with ı	no particu	ılar des	cription.		

No.		Items				Deta	ails			Setti	ing range
2235	SV035	Servo	_	F	Е	D	С	В	А	9	8
	SSF4	function		clt		clG1		cl2n	clet	cl	ltq
		selection4		7	6	5	4	3	2	1	0
					iup			to	dt		
					i			-i			
				bit		g when "		Ме	aning wl	nen "1" i	is set
			0			on time se		م المن المامة			
					Set to "0"	'. (For ma	achine too	bi builder	adjustme	ent)	
			2	tdt							
			4								
			5								
			6	iup	Set to "1"	" in the ca	ase of an	y motors	from HC	152 to H	C702 and
				iup	from HC ²	153 to HC	453.				
			7								
			8		Set the re				detectior	n in respe	ect to the
			9	cltq	maximun 00: 100%		of the mot 90%		(Ctondo	rd) 11	700/
			A			or normal		10. 607	6 (Standa	iiu) 11.	: 70%
				-	octang to	nonnai	030				eak of the
				clet					vo secono		
								MPOS	of the ser	vo monit	or screen.
			В	cl2n	Collision valid	detection	method 2	2 Collisio	n detectio	on metho	d 2 invalid
			С		Collision	detection	method ⁻	1			
			D			ollision de).
			_	clG1	The G1 c						
			E		feed won	G1=0, the i't functior		detection	method	1 during	cutting
						or normal					
			F	clt	Ĵ			setting	value is d	lisplayed	in MPOS
							of the servo monitor screen.			en.	
			(Not	te) Set	to "0" for	bits with r	no particu	lar descr	iption.		

SV036			Details								Setting range		
	Power	F	ŀ	Ε	D	С	В	Α		9	8		
PTYP	supply type			am	p				rtyp				
		7	(6	5	4	3	2		1	0		
				-			otyp			-			
		bit				E	xplanat	ion					
		0							nd the	power	supply		
		1											
		2			he exter	nal em	ergency	stop fun	iction, a	add 4()h.		
		3			1x	2x	3x	4x	5x	6x7>	8x		
		ptyp	ting										
		4	x0				CV-300						
		5	x1	uscu	CV-110						CR-10		
			x2)				CR-15		
		7	x3								CR-22		
				CV-37]					CR-37		
						3		CV-450	CV-55	0			
				CV-55		CV-260					CR-55		
				<u></u>			CV-370						
				CV-75		<u> </u>	-				CR-75 CR-90		
			ΛŬ		01 100	I	1	I					
		8	Set the	e rege	nerative	resisto	r type w	hen MD	S-A-CF	R is us	ed.		
		q								Ca	pacity		
			tin								-		
		A	0				tting whe	en using	power	suppl	у		
		В	1	G	ZG200V	V260HN	٨J	26Ω		80V	V		
			2	G	ZG300V	V130HN	∕JJ×2	26Ω		150	W		
			3	Μ	R-RB30			13Ω		300	W		
			4	M	R-RB50			13Ω					
								6.7Ω					
						V200HN	/J×3	6.7Ω					
								<u>.</u>					
								·····					
					-UNIT-3			15Ω		210	0W		
					o setting	J							
		C											
			,y		- • •								
		E											
		F											
			0 1 2 3 4 5 6 7 7 8 9 rtyp A	0When are cc To val3ptypSet- ting4x0556x167x3x4x5x6x7x8x989rtypA0B123456789789123456789A tFCAlway	0 When the C 2 are connects 3 ptyp 4 5 5 6 7 x0 x0 used x1 x2 x3 x4 x5 x6 x6 CV-55 x7 x8 x8 CV-75 x9 0 8 R 9 rtyp A 0 B 1 G 3 4 M 5 G 3 M 4 M 5 G 3 M 4 M 5 G 1 G 2 G 3 M 4 M 5 G 6 G 7 R 8 R	0When the CN4 connare connected, settin To validate the exter3ptyp4Set- ting5Not x05X16X17X3 x4X3 x4X4CV-37 x5X5CV-150 x6X6CV-55 x7 x98Set the regenerative set magnetic 19rtypASet the regenerative 1BSet the regenerative set magnetic 11GZG200V 22GZG300V 3 33MR-RB30 4 4 44MR-RB50 5 55GZG200V 66GZG300V 7 7 87R-UNIT-1 8 8 88R-UNIT-2 9 	0When the CN4 connector o are connected, setting belo To validate the external em3ptyp4Set- ting0x1x2x5Not usedx1CV-110x2CV-220x3x4x3x4CV-37x5x4CV-35CV-260x7x5CV-150x6CV-55CV-260x7x9CV-1858Set the regenerative resisto9RtppNDS-C1-CV (Sel regeneration)1GZG200W260HN2GZG300W130HN3MR-RB304MR-RB304MR-RB304MR-RB304NR-RB304NNIT-18R-UNIT-18R-UNIT-18R-UNIT-3A to FNo setting	0 When the CN4 connector of the drivare connected, setting below is nector to validate the external emergency. 3 ptyp 4 Setting 0x 1x 2x 3x 5 Not CV-300 x1 CV-300 5 Not used CV-300 x1 CV-110 x2 CV-220 x3 x4 CV-37 x3 x4 CV-37 CV-370 x5 CV-150 x6 CV-55 x9 CV-185 CV-370 x8 CV-75 CV-370 x9 CV-185 CV-370 x9 R CV-100 <t< td=""><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td></t<>	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		

No.		Items Details			
2237	SV037 JL	Load inertia scale	Set "the motor inertia + motor axis conversion load inertia" in respect to the motor inertia. $SV037 (JL) = \frac{JI+Jm}{Jm} *100$ Jm: Motor inertia JI: Motor axis conversion load inertia	0 to 5000 (%)	
2238	SV038 FHz1	Notch filter frequency 1	Set the vibration frequency to suppress if machine vibration occurs. (Valid at 72 or more) When not using, set to "0".	0 to 3000 (Hz)	
2239	SV039 LMCD	Lost motion compensation timing	Set this when the lost motion compensation timing doest not match. Adjust by increasing the value by 10 at a time.	0 to 2000 (ms)	
2240			ower order 8bits are used for different functions. Icy*256) + LMCT	0 to 32767	
	SV040 LMCT (Low order)	Lost motion compensation non-sensitive band	Set the non-sensitive band of the lost motion compensation in the feed forward control. When "0" is set, the actual value that is set is $2\mu m$. Adjust by increasing by $1\mu m$ at a time.	0 to 100 (μm)	
	SV040 lcy (High order)	Current bias 2	Normally, set to "40" if you use HC202 to HC902, HC203 to HC703. Use this in combination with SV030 and the high order 8bits of SV045.	0 to 127	
2241	SV041 LMC2	Lost motion compensation 2	Set this with SV016 (LMC1) only when you wish to set the lost motion compensation amount to be different depending on the command directions. Set to "0" as a standard.	-1 to 200 (Stall [rated] current %)	
2242	SV042 OVS2	Overshooting compensation 2	Set this with SV031 (OVS1) only when you wish to set the overshooting compensation amount to be different depending on the command directions. Set to "0" as a standard.	-1 to 100 (Stall [rated] current %)	
2243	SV043 OBS1	Disturbance observer filter frequency	Set the disturbance observer filter band. Set to "100" as a standard. To use the disturbance observer, also set SV037 (JL) and SV044 (OBS2). When not using, set to "0".	0 to 1000 (rad/s)	
2244	SV044 OBS2	Disturbance observer gain	Set the disturbance observer gain. The standard setting is "100" to "300". To use the disturbance observer, also set SV037 (JL) and SV043 (OBS1). When not using, set to "0".	0 to 500 (%)	
2245			ower order 8bits are used for different functions. Icy*256) + LMCT	0 to 32767	
	SV045 TRUB (Low order)	Frictional torque	When you use the collision detection function, set the frictional torque.	0 to 100 (Stall [rated] current %)	
	SV045 Ib1 (High order)	Current bias 3	Set to "0" as a standard. Use this in combination with SV030 and the high order 8bits of SV040.	0 to 127	

No.		Items	Details	Setting range
2246	SV046		Not used. Set to "0".	0
2247	SV047 EC	Inductive voltage compensation gain	Set the inductive voltage compensation gain. Set to "100" as a standard. If the current FB peak exceeds the current command peak, lower the gain.	0 to 200 (%)
2248	SV048 EMGrt	Vertical axis drop prevention time	Input a length of time to prevent the vertical axis from dropping by delaying Ready OFF until the brake works when the emergency stop occurs. Increase the setting by 100ms at a time and set the value where the axis does not drop.	0 to 20000 (ms)
2249	SV049 PGN1sp	Position loop gain 1 in spindle synchronous control	Set the position loop gain during the spindle synchronous control (synchronous tapping, synchronous control with spindle/C axis). Set the same value as the value of the spindle parameter, position loop gain in synchronous control. When performing the SHG control, set this with SV050 (PGN2sp) and SV058 (SHGCsp).	1 to 200 (rad/s)
2250	PGN2sp	Position loop gain 2 in spindle synchronous control	Set this with SV049 (PGN1sp) and SV058 (SHGCsp) if you wish to perform the SHG control in the spindle synchronous control (synchronous tapping, synchronous control with spindle/C axis). When not performing the SHG control, set to "0".	0 to 999 (rad/s)
2251	SV051 DFBT	Dual feed back control time constant	Set the control time constant in dual feed back. When "0" is set, the actual value that is set is 1ms. The higher the time constant is, the closer it gets to the semi-closed control, so the limit of the position loop gain is raised.	0 to 9999 (ms)
2252	SV052 DFBN	Dual feedback control non-sensitive band	Set the non-sensitive band in the dual feedback control. Set to "0" as a standard.	0 to 9999 (μm)
2253	SV053 OD3	Excessive error detection width in special control	Set the excessive error detection width when servo ON in a special control (initial absolute position setting, stopper control, etc.). If "0" is set, excessive error detection won't be performed when servo ON during a special control.	0 to 32767 (mm)
2254	SV054 ORE	Overrun detection width in closed loop control	Set the overrun detection width in the full-closed loop control. If the gap between the motor end detector and the linear scale (machine end detector) exceeds the value set by this parameter, it is judged to be overrun and Alarm 43 will be detected. When "-1" is set, the alarm detection won't be performed. When "0" is set, overrun is detected with a 2mm width.	-1 to 32767 (mm)

No.	I	tems	Details	Setting range
2255	SV055 EMGx	Max. gate off delay time after emergency stop	Set a length of time from the point when the emergency stop is input to the point when READY OFF is compulsorily executed. Normally, set the same value as the absolute value of SV056. In preventing the vertical axis from dropping, the gate off is delayed for the length of time set by SV048 if SV055's value is smaller than that of SV048.	0 to 20000 (ms)
2256	SV056 EMGt	Deceleration time constant at emergency stop	In the vertical axis drop prevention control, set the time constant used for the deceleration control at emergency stop. Set a length of time that takes from rapid traverse rate (rapid) to stopping. Normally, set the same value as the rapid traverse acceleration/deceleration time constant. When executing the synchronous operation, put the minus sign to the settings of both of the master axis and slave axis.	-20000 to 20000 (ms)
2257	SV057 SHGC	SHG control gain	When performing the SHG control, set this with S003 (PGN1) and SV004 (PGN2). When not performing the SHG control, set to "0".	0 to 999 (rad/s)
2258	SV058 SHGCsp	SHG control gain in spindle synchronous control	Set this with SV049 (PGN1sp) and SV050 (PGN2sp) if you wish to perform the SHG control in the spindle synchronous control (synchronous tapping, synchronous control with spindle/C axis). When not performing the SHG control, set to "0".	
2259	SV059 TCNV	Collision detection torque estimating gain	Set the torque estimating gain when using the collision detection function. After setting as SV035/bitF(clt)=1 and performing acceleration/deceleration, set the value displayed in MPOS of the NC servo monitor screen. Set to "0" when not using the collision detection function.	-32768 to 32767
2260	SV060 TLMT	Collision detection level	When using the collision detection function, set the collision detection level during the G0 feeding. If "0" is set, none of the collision detection function will work.	0 to 999 (Stall [rated] current %)
2261	SV061 DA1NO	D/A output channel 1 data No.	Input the data number you wish to output to D/A output channel. In the case of MDS-C1-V2, set the axis on the side to	-1 to 127
2262	SV062 DA2NO	D/A output channel 2 data No.	which the data will not be output to "-1".	
2263	SV063 DA1MPY	D/A output channel 1 output scale	Set the scale with a 1/256 unit. When "0" is set, output is done with the standard output unit.	-32768 to 32767 (Unit: 1/256)
2264	SV064 DA2MPY	D/A output channel 2 output scale		
2265	SV065		Not used. Set to "0".	0

(2) Initial setting value

(a) HC**/HC**R series

N	lotor	HC 52	HC 102	HC 152	HC 202	HC 352	HC 452	HC 702	HC 902
	ve unit pacity	05	10	20	20	35	45	70	90
SV001	PC1	_	-	-	-	-	-	-	-
SV002	PC2	-	-	-	-	-	-	-	-
SV003	PGN1	33	33	33	33	33	33	33	33
SV004	PGN2	0	0	0	0	0	0	0	0
SV005	VGN1	100	100	100	100	100	100	150	150
SV006	VGN2	0	0	0	0	0	0	0	0
SV007	VIL	0	0	0	0	0	0	0	0
SV008	VIA	1364	1364	1364	1364	1364	1364	1364	1364
SV009	IQA	2048	2048	2048	2048	2048	2048	2048	2048
SV010	IDA	2048	2048	2048	2048	2048	2048	2048	2048
SV011	IQG	512	512	512	256	256	256	200	200
SV012	IDG	512	512	512	512	512	512	256	256
SV013	ILMT	500	500	500	500	500	500	500	500
SV014	ILMTsp	500	500	500	500	500	500	500	500
SV015	FFC	0	0	0	0	0	0	0	0
SV016	LMC1	0	0	0	0	0	0	0	0
SV017	SPEC	0000	0000	0000	0000	0000	0000	0000	0000
SV018	PIT	-	-	-	-	-	-	-	-
SV019	RNG1	-	-	-	-	-	-	-	-
SV020	RNG2	-	-	-	-	-	-	-	-
SV021	OLT	60	60	60	60	60	60	60	60
SV022	OLL	150	150	150	150	150	150	150	150
SV023	OD1	6	6	6	6	6	6	6	6
SV024	INP	50	50	50	50	50	50	50	50
SV025	MTYP	xxB0	xxB1	xxB2	xxB3	xxB4	xxB5	xxB6	xxB7
SV026	OD2	6	6	6	6	6	6	6	6
SV027	SSF1	4000	4000	4000	4000	4000	4000	4000	4000
SV028		0	0	0	0	0	0	0	0
SV029	VCS	0	0	0	0	0	0	0	0
SV030	IVC	0	0	0	0	0	0	0	0
SV031	OVS1	0	0	0	0	0	0	0	0
SV032	TOF	0	0	0	0	0	0	0	0

Γ	Notor	HC 52	HC 102	HC 152	HC 202	HC 352	HC 452	HC 702	HC 902
	ive unit Ipacity	05	10	20	20	35	45	70	90
SV033	SSF2	0000	0000	0000	0000	0000	0000	0000	0000
SV034	SSF3	0003	0003	0003	0003	0003	0003	0003	0003
SV035	SSF4	0000	0000	0040	0040	0040	0040	0040	0040
SV036	PTYP	0000	0000	0000	0000	0000	0000	0000	0000
SV037	JL	0	0	0	0	0	0	0	0
SV038	FHz1	0	0	0	0	0	0	0	0
SV039	LMCD	0	0	0	0	0	0	0	0
SV040	LMCT	0	0	0	10240	10240	10240	10240	10240
SV041	LMC2	0	0	0	0	0	0	0	0
SV042	OVS2	0	0	0	0	0	0	0	0
SV043	OBS1	0	0	0	0	0	0	0	0
SV044	OBS2	0	0	0	0	0	0	0	0
SV045	TRUB	0	0	0	0	0	0	0	0
SV046		0	0	0	0	0	0	0	0
SV047	EC	100	100	100	100	100	100	100	100
SV048	EMGrt	0	0	0	0	0	0	0	0
SV049	PGN1sp	15	15	15	15	15	15	15	15
SV050	PGN2sp	0	0	0	0	0	0	0	0
SV051	DFBT	0	0	0	0	0	0	0	0
SV052	DFBN	0	0	0	0	0	0	0	0
SV053	OD3	0	0	0	0	0	0	0	0
SV054	ORE	0	0	0	0	0	0	0	0
SV055	EMGx	0	0	0	0	0	0	0	0
SV056	EMGt	0	0	0	0	0	0	0	0
SV057	SHGC	0	0	0	0	0	0	0	0
SV058	SHGCsp	0	0	0	0	0	0	0	0
SV059	TCNV	0	0	0	0	0	0	0	0
SV060	TLMT	0	0	0	0	0	0	0	0
SV061	DA1NO	0	0	0	0	0	0	0	0
SV062	DA2NO	0	0	0	0	0	0	0	0
SV063	DA1MPY	0	0	0	0	0	0	0	0
SV064	DA2MPY	0	0	0	0	0	0	0	0
SV065		0	0	0	0	0	0	0	0

	lotor	HC 53	HC 103	HC 153	HC 203	HC 353	HC 453	HC 703	HC 103R	HC 153R	HC 203R	HC 353R
	ve unit pacity	05	10	20	35	45	70	90	10	10	20	35
SV001	PC1	-	-	-	-	-	-	-	-	-	-	-
SV002	PC2	-	-	-	-	-	-	-	-	-	-	-
SV003	PGN1	33	33	33	33	33	33	33	33	33	33	33
SV004	PGN2	0	0	0	0	0	0	0	0	0	0	0
SV005	VGN1	100	100	100	100	100	100	100	15	15	20	40
SV006	VGN2	0	0	0	0	0	0	0	0	0	0	0
SV007	VIL	0	0	0	0	0	0	0	0	0	0	0
SV008	VIA	1364	1364	1364	1364	1364	1364	1364	1364	1364	1364	1364
SV009	IQA	2048	2048	2048	2048	2048	2048	2048	4096	4096	4096	4096
SV010	IDA	2048	2048	2048	2048	2048	2048	2048	4096	4096	4096	4096
SV011	IQG	256	256	256	256	256	256	256	256	256	256	256
SV012	IDG	512	512	512	512	512	512	512	512	512	512	512
SV013	ILMT	500	500	500	500	500	500	500	500	500	500	500
SV014	ILMTsp	500	500	500	500	500	500	500	500	500	500	500
SV015	FFC	0	0	0	0	0	0	0	0	0	0	0
SV016	LMC1	0	0	0	0	0	0	0	0	0	0	0
SV017	SPEC	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000
SV018	PIT	-	-	-	-	-	-	-	-	-	-	-
SV019	RNG1	-	-	-	-	-	-	-	-	-	-	-
SV020	RNG2	-	-	-	-	-	-	-	-	-	-	-
SV021	OLT	60	60	60	60	60	60	60	60	60	60	60
SV022	OLL	150	150	150	150	150	150	150	150	150	150	150
SV023	OD1	6	6	6	6	6	6	6	6	6	6	6
SV024	INP	50	50	50	50	50	50	50	50	50	50	50
SV025	MTYP	xxC0	xxC1	xxC2	xxC3	xxC4	xxC5	xxC6	xxE1	xxE2	xxE3	xxE4
SV026	OD2	6	6	6	6	6	6	6	6	6	6	6
SV027	SSF1	4000	4000	4000	4000	4000	4000	4000	4000	4000	4000	4000
SV028		0	0	0	0	0	0	0	0	0	0	0
SV029	VCS	0	0	0	0	0	0	0	0	0	0	0
SV030	IVC	0	0	0	0	0	0	0	0	0	0	0
SV031	OVS1	0	0	0	0	0	0	0	0	0	0	0
SV032	TOF	0	0	0	0	0	0	0	0	0	0	0

M	lotor	HC 53	HC 103	HC 153	HC 203	HC 353	HC 453	HC 703	HC 103R	HC 153R	HC 203R	HC 353R
	ve unit pacity	05	10	20	35	45	70	90	10	10	20	35
SV033	SSF2	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000
SV034	SSF3	0003	0003	0003	0003	0003	0003	0003	0000	0000	0000	0000
SV035	SSF4	0000	0000	0040	0040	0040	0040	0040	0000	0000	0000	0000
SV036	PTYP	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000
SV037	JL	0	0	0	0	0	0	0	0	0	0	0
SV038	FHz1	0	0	0	0	0	0	0	0	0	0	0
SV039	LMCD	0	0	0	0	0	0	0	0	0	0	0
SV040	LMCT	0	0	0	1024 0	1024 0	1024 0	1024 0	0	0	0	0
SV041	LMC2	0	0	0	0	0	0	0	0	0	0	0
SV042	OVS2	0	0	0	0	0	0	0	0	0	0	0
SV043	OBS1	0	0	0	0	0	0	0	0	0	0	0
SV044	OBS2	0	0	0	0	0	0	0	0	0	0	0
SV045	TRUB	0	0	0	0	0	0	0	0	0	0	0
SV046		0	0	0	0	0	0	0	0	0	0	0
SV047	EC	100	100	100	100	100	100	100	100	100	100	100
SV048	EMGrt	0	0	0	0	0	0	0	0	0	0	0
SV049	PGN1sp	15	15	15	15	15	15	15	15	15	15	15
SV050	PGN2sp	0	0	0	0	0	0	0	0	0	0	0
SV051	DFBT	0	0	0	0	0	0	0	0	0	0	0
SV052	DFBN	0	0	0	0	0	0	0	0	0	0	0
SV053	OD3	0	0	0	0	0	0	0	0	0	0	0
SV054	ORE	0	0	0	0	0	0	0	0	0	0	0
SV055	EMGx	0	0	0	0	0	0	0	0	0	0	0
SV056	EMGt	0	0	0	0	0	0	0	0	0	0	0
SV057	SHGC	0	0	0	0	0	0	0	0	0	0	0
SV058	SHGCsp	0	0	0	0	0	0	0	0	0	0	0
SV059	TCNV	0	0	0	0	0	0	0	0	0	0	0
SV060	TLMT	0	0	0	0	0	0	0	0	0	0	0
SV061	DA1NO	0	0	0	0	0	0	0	0	0	0	0
SV062	DA2NO	0	0	0	0	0	0	0	0	0	0	0
SV063	DA1MPY	0	0	0	0	0	0	0	0	0	0	0
SV064	DA2MPY	0	0	0	0	0	0	0	0	0	0	0
SV065		0	0	0	0	0	0	0	0	0	0	0

(b) HA**N series

N	lotor	HA 40N	HA 80N	HA 100N	HA 200N	HA 300N	HA 700N	HA 900N
	ve unit pacity	05	10	20	35	45	70	90
SV001	PC1	-	-	-	-	-	-	-
SV002	PC2	-	-	-	-	-	-	-
SV003	PGN1	33	33	33	33	33	25	25
SV004	PGN2	0	0	0	0	0	0	0
SV005	VGN1	150	150	150	150	150	250	250
SV006	VGN2	0	0	0	0	0	0	0
SV007	VIL	0	0	0	0	0	0	0
SV008	VIA	1364	1364	1364	1364	1364	1364	1364
SV009	IQA	2048	2048	2048	2048	2048	2048	2048
SV010	IDA	2048	2048	2048	2048	2048	2048	2048
SV011	IQG	512	512	256	256	256	200	200
SV012	IDG	512	512	512	512	512	256	256
SV013	ILMT	500	500	500	500	500	500	500
SV014	ILMTsp	500	500	500	500	500	500	500
SV015	FFC	0	0	0	0	0	0	0
SV016	LMC1	0	0	0	0	0	0	0
SV017	SPEC	0000	0000	0000	0000	0000	0000	0000
SV018	PIT	-	-	-	-	-	-	-
SV019	RNG1	-	-	-	-	-	-	-
SV020	RNG2	-	-	-	-	-	-	-
SV021	OLT	60	60	60	60	60	60	60
SV022	OLL	150	150	150	150	150	150	150
SV023	OD1	6	6	6	6	6	6	6
SV024	INP	50	50	50	50	50	50	50
SV025	MTYP	xx00	xx01	xx02	xx03	xx04	xx05	xx06
SV026	OD2	6	6	6	6	6	6	6
SV027	SSF1	4000	4000	4000	4000	4000	4000	4000
SV028		0	0	0	0	0	0	0
SV029	VCS	0	0	0	0	0	0	0
SV030	IVC	0	0	0	0	0	0	0
SV031	OVS1	0	0	0	0	0	0	0
SV032	TOF	0	0	0	0	0	0	0

N	lotor	HA 40N	HA 80N	HA 100N	HA 200N	HA 300N	HA 700N	HA 900N
	ve unit pacity	05	10	20	35	45	70	90
SV033	SSF2	0000	0000	0000	0000	0000	0000	0000
SV034	SSF3	0000	0000	0000	0000	0000	0000	0000
SV035	SSF4	0000	0000	0000	0000	0000	0000	0000
SV036	PTYP	0000	0000	0000	0000	0000	0000	0000
SV037	JL	0	0	0	0	0	0	0
SV038	FHz1	0	0	0	0	0	0	0
SV039	LMCD	0	0	0	0	0	0	0
SV040	LMCT	0	0	0	0	0	0	0
SV041	LMC2	0	0	0	0	0	0	0
SV042	OVS2	0	0	0	0	0	0	0
SV043	OBS1	0	0	0	0	0	0	0
SV044	OBS2	0	0	0	0	0	0	0
SV045	TRUB	0	0	0	0	0	0	0
SV046		0	0	0	0	0	0	0
SV047	EC	100	100	100	100	100	100	100
SV048	EMGrt	0	0	0	0	0	0	0
SV049	PGN1sp	15	15	15	15	15	15	15
SV050	PGN2sp	0	0	0	0	0	0	0
SV051	DFBT	0	0	0	0	0	0	0
SV052	DFBN	0	0	0	0	0	0	0
SV053	OD3	0	0	0	0	0	0	0
SV054	ORE	0	0	0	0	0	0	0
SV055	EMGx	0	0	0	0	0	0	0
SV056	EMGt	0	0	0	0	0	0	0
SV057	SHGC	0	0	0	0	0	0	0
SV058	SHGCsp	0	0	0	0	0	0	0
SV059	TCNV	0	0	0	0	0	0	0
SV060	TLMT	0	0	0	0	0	0	0
SV061	DA1NO	0	0	0	0	0	0	0
SV062	DA2NO	0	0	0	0	0	0	0
SV063	DA1MPY	0	0	0	0	0	0	0
SV064	DA2MPY	0	0	0	0	0	0	0
SV065		0	0	0	0	0	0	0

N	lotor	HA 43N	HA 83N	HA 93N	HA 103N	HA 203N	HA 303N	HA 703N
	ve unit pacity	05	10	20	35	45	70	90
SV001	PC1	-	-	-	-	-	-	-
SV002	PC2	-	-	-	-	-	-	-
SV003	PGN1	33	33	33	33	33	33	25
SV004	PGN2	0	0	0	0	0	0	0
SV005	VGN1	150	150	150	150	150	150	250
SV006	VGN2	0	0	0	0	0	0	0
SV007	VIL	0	0	0	0	0	0	0
SV008	VIA	1364	1364	1364	1364	1364	1364	1364
SV009	IQA	2048	2048	2048	2048	2048	2048	2048
SV010	IDA	2048	2048	2048	2048	2048	2048	2048
SV011	IQG	256	256	256	256	256	256	200
SV012	IDG	512	512	512	512	512	512	256
SV013	ILMT	500	500	500	500	500	500	500
SV014	ILMTsp	500	500	500	500	500	500	500
SV015	FFC	0	0	0	0	0	0	0
SV016	LMC1	0	0	0	0	0	0	0
SV017	SPEC	0000	0000	0000	0000	0000	0000	0000
SV018	PIT	-	-	-	-	-	-	-
SV019	RNG1	-	-	-	-	-	-	-
SV020	RNG2	-	-	-	-	-	-	-
SV021	OLT	60	60	60	60	60	60	60
SV022	OLL	150	150	150	150	150	150	150
SV023	OD1	6	6	6	6	6	6	6
SV024	INP	50	50	50	50	50	50	50
SV025	MTYP	xx80	xx81	xx8A	xx82	xx83	xx84	xx85
SV026	OD2	6	6	6	6	6	6	6
SV027	SSF1	4000	4000	4000	4000	4000	4000	4000
SV028		0	0	0	0	0	0	0
SV029	VCS	0	0	0	0	0	0	0
SV030	IVC	0	0	0	0	0	0	0
SV031	OVS1	0	0	0	0	0	0	0
SV032	TOF	0	0	0	0	0	0	0

N	lotor	HA 43N	HA 83N	HA 93N	HA 103N	HA 203N	HA 303N	HA 703N
	ve unit pacity	05	10	20	35	45	70	90
SV033	SSF2	0000	0000	0000	0000	0000	0000	0000
SV034	SSF3	0000	0000	0000	0000	0000	0000	0000
SV035	SSF4	0000	0000	0000	0000	0000	0000	0000
SV036	PTYP	0000	0000	0000	0000	0000	0000	0000
SV037	JL	0	0	0	0	0	0	0
SV038	FHz1	0	0	0	0	0	0	0
SV039	LMCD	0	0	0	0	0	0	0
SV040	LMCT	0	0	0	0	0	0	0
SV041	LMC2	0	0	0	0	0	0	0
SV042	OVS2	0	0	0	0	0	0	0
SV043	OBS1	0	0	0	0	0	0	0
SV044	OBS2	0	0	0	0	0	0	0
SV045	TRUB	0	0	0	0	0	0	0
SV046		0	0	0	0	0	0	0
SV047	EC	100	100	100	100	100	100	100
SV048	EMGrt	0	0	0	0	0	0	0
SV049	PGN1sp	15	15	15	15	15	15	15
SV050	PGN2sp	0	0	0	0	0	0	0
SV051	DFBT	0	0	0	0	0	0	0
SV052	DFBN	0	0	0	0	0	0	0
SV053	OD3	0	0	0	0	0	0	0
SV054	ORE	0	0	0	0	0	0	0
SV055	EMGx	0	0	0	0	0	0	0
SV056	EMGt	0	0	0	0	0	0	0
SV057	SHGC	0	0	0	0	0	0	0
SV058	SHGCsp	0	0	0	0	0	0	0
SV059	TCNV	0	0	0	0	0	0	0
SV060	TLMT	0	0	0	0	0	0	0
SV061	DA1NO	0	0	0	0	0	0	0
SV062	DA2NO	0	0	0	0	0	0	0
SV063	DA1MPY	0	0	0	0	0	0	0
SV064	DA2MPY	0	0	0	0	0	0	0
SV065		0	0	0	0	0	0	0

N	lotor	HA 053	HA 13	HA 053N	HA 13N	HA 23N	HA 33N
	ve unit pacity	01	01	01	01	03	03
SV001	PC1	-	-	-	-	-	-
SV002	PC2	-	-	-	-	-	-
SV003	PGN1	33	33	33	33	33	33
SV004	PGN2	0	0	0	0	0	0
SV005	VGN1	70	70	70	70	100	100
SV006	VGN2	0	0	0	0	0	0
SV007	VIL	0	0	0	0	0	0
SV008	VIA	1364	1364	1364	1364	1364	1364
SV009	IQA	2048	2048	2048	2048	2048	2048
SV010	IDA	2048	2048	2048	2048	2048	2048
SV011	IQG	256	256	256	256	224	224
SV012	IDG	256	256	256	256	224	224
SV013	ILMT	500	500	500	500	500	500
SV014	ILMTsp	500	500	500	500	500	500
SV015	FFC	0	0	0	0	0	0
SV016	LMC1	0	0	0	0	0	0
SV017	SPEC	0000	0000	0000	0000	0000	0000
SV018	PIT	-	-	-	-	-	-
SV019	RNG1	10	10	-	-	-	-
SV020	RNG2	10	10	-	-	-	-
SV021	OLT	60	60	60	60	60	60
SV022	OLL	150	150	150	150	150	150
SV023	OD1	6	6	6	6	6	6
SV024	INP	50	50	50	50	50	50
SV025	MTYP	338C	338D	xx8C	xx8D	xx8E	xx8F
SV026	OD2	6	6	6	6	6	6
SV027	SSF1	4000	4000	4000	4000	4000	4000
SV028		0	0	0	0	0	0
SV029	VCS	0	0	0	0	0	0
SV030	IVC	0	0	0	0	0	0
SV031	OVS1	0	0	0	0	0	0
SV032	TOF	0	0	0	0	0	0

(Note) The HA053 and HA13 are dedicated for the MDS-B-Vx.

N	lotor	HA 053	HA 13	HA 053N	HA 13N	HA 23N	HA 33N
	ve unit pacity	01	01	01	01	03	03
SV033	SSF2	0000	0000	0000	0000	0000	0000
SV034	SSF3	0000	0000	0000	0000	0000	0000
SV035	SSF4	0000	0000	0000	0000	0000	0000
SV036	PTYP	0000	0000	0000	0000	0000	0000
SV037	JL	0	0	0	0	0	0
SV038	FHz1	0	0	0	0	0	0
SV039	LMCD	0	0	0	0	0	0
SV040	LMCT	0	0	0	0	0	0
SV041	LMC2	0	0	0	0	0	0
SV042	OVS2	0	0	0	0	0	0
SV043	OBS1	0	0	0	0	0	0
SV044	OBS2	0	0	0	0	0	0
SV045	TRUB	0	0	0	0	0	0
SV046		0	0	0	0	0	0
SV047	EC	100	100	100	100	100	100
SV048	EMGrt	0	0	0	0	0	0
SV049	PGN1sp	15	15	15	15	15	15
SV050	PGN2sp	0	0	0	0	0	0
SV051	DFBT	0	0	0	0	0	0
SV052	DFBN	0	0	0	0	0	0
SV053	OD3	0	0	0	0	0	0
SV054	ORE	0	0	0	0	0	0
SV055	EMGx	0	0	0	0	0	0
SV056	EMGt	0	0	0	0	0	0
SV057	SHGC	0	0	0	0	0	0
SV058	SHGCsp	0	0	0	0	0	0
SV059	TCNV	0	0	0	0	0	0
SV060	TLMT	0	0	0	0	0	0
SV061	DA1NO	0	0	0	0	0	0
SV062	DA2NO	0	0	0	0	0	0
SV063	DA1MPY	0	0	0	0	0	0
SV064	DA2MPY	0	0	0	0	0	0
SV065	HA053 and	0	0	0	0	0	0

(Note) The HA053 and HA13 are dedicated for the MDS-B-Vx.

7. Servo Parameters 7.3 MDS-C1-Vx Standard Specification (MDS-B-Vx Compatible)

(c) HA**L series

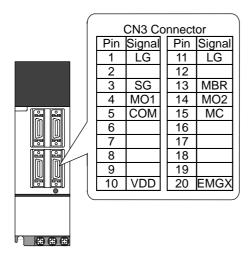
N	lotor	HA 50L	HA 100L	HA 150L	HA 200L	HA 300L	HA 500L	HA- A11KL	HA- A15KL
	ve unit pacity	05	10	10	20	35	45	110	150
SV001	PC1	-	-	-	-	-	-	-	-
SV002	PC2	-	-	-	-	-	-	-	-
SV003	PGN1	33	33	33	33	33	33	33	33
SV004	PGN2	0	0	0	0	0	0	0	0
SV005	VGN1	30	30	30	30	30	50	150	150
SV006	VGN2	0	0	0	0	0	0	0	0
SV007	VIL	0	0	0	0	0	0	0	0
SV008	VIA	1364	1364	1364	1364	1364	1364	1364	1364
SV009	IQA	2048	2048	2048	2048	2048	2048	2048	2048
SV010	IDA	2048	2048	2048	2048	2048	2048	2048	2048
SV011	IQG	512	512	512	512	256	256	512	512
SV012	IDG	512	512	512	512	512	512	512	512
SV013	ILMT	500	500	500	500	500	500	500	500
SV014	ILMTsp	500	500	500	500	500	500	500	500
SV015	FFC	0	0	0	0	0	0	0	0
SV016	LMC1	0	0	0	0	0	0	0	0
SV017	SPEC	0000	0000	0000	0000	0000	0000	0000	0000
SV018	PIT	-	-	-	-	-	-	-	-
SV019	RNG1	-	-	-	-	-	-	-	-
SV020	RNG2	-	-	-	-	-	-	-	-
SV021	OLT	60	60	60	60	60	60	60	3
SV022	OLL	150	150	150	150	150	150	150	150
SV023	OD1	6	6	6	6	6	6	6	6
SV024	INP	50	50	50	50	50	50	50	50
SV025	MTYP	xx20	xx21	xx2A	xx22	xx23	xx24	xx27	xx28
SV026	OD2	6	6	6	6	6	6	6	6
SV027	SSF1	4000	4000	4000	4000	4000	4000	4000	4000
SV028		0	0	0	0	0	0	0	0
SV029	VCS	0	0	0	0	0	0	0	0
SV030	IVC	0	0	0	0	0	0	0	0
SV031	OVS1	0	0	0	0	0	0	0	0
SV032	TOF	0	0	0	0	0	0	0	0

N	lotor	HA 50L	HA 100L	HA 150L	HA 200L	HA 300L	HA 500L	HA- A11KL	HA- A15KL
	ve unit pacity	05	10	10	20	35	45	110	150
SV033	SSF2	0000	0000	0000	0000	0000	0000	0000	0000
SV034	SSF3	0000	0000	0000	0000	0000	0000	0000	0000
SV035	SSF4	0000	0000	0000	0000	0000	0000	0000	0000
SV036	PTYP	0000	0000	0000	0000	0000	0000	0000	0000
SV037	JL	0	0	0	0	0	0	0	0
SV038	FHz1	0	0	0	0	0	0	0	0
SV039	LMCD	0	0	0	0	0	0	0	0
SV040	LMCT	0	0	0	0	0	0	0	0
SV041	LMC2	0	0	0	0	0	0	0	0
SV042	OVS2	0	0	0	0	0	0	0	0
SV043	OBS1	0	0	0	0	0	0	0	0
SV044	OBS2	0	0	0	0	0	0	0	0
SV045	TRUB	0	0	0	0	0	0	0	0
SV046		0	0	0	0	0	0	0	0
SV047	EC	100	100	100	100	100	100	100	100
SV048	EMGrt	0	0	0	0	0	0	0	0
SV049	PGN1sp	15	15	15	15	15	15	15	15
SV050	PGN2sp	0	0	0	0	0	0	0	0
SV051	DFBT	0	0	0	0	0	0	0	0
SV052	DFBN	0	0	0	0	0	0	0	0
SV053	OD3	0	0	0	0	0	0	0	0
SV054	ORE	0	0	0	0	0	0	0	0
SV055	EMGx	0	0	0	0	0	0	0	0
SV056	EMGt	0	0	0	0	0	0	0	0
SV057	SHGC	0	0	0	0	0	0	0	0
SV058	SHGCsp	0	0	0	0	0	0	0	0
SV059	TCNV	0	0	0	0	0	0	0	0
SV060	TLMT	0	0	0	0	0	0	0	0
SV061	DA1NO	0	0	0	0	0	0	0	0
SV062	DA2NO	0	0	0	0	0	0	0	0
SV063	DA1MPY	0	0	0	0	0	0	0	0
SV064	DA2MPY	0	0	0	0	0	0	0	0
SV065		0	0	0	0	0	0	0	0

N	lotor	HA 53L	HA 103L	HA 153L	HA 203L	HA 303L	HA 503L
	ve unit pacity	10	20	20	35	45	70
SV001	PC1	-	-	-	-	-	-
SV002	PC2	-	-	-	-	-	-
SV003	PGN1	33	33	33	33	33	33
SV004	PGN2	0	0	0	0	0	0
SV005	VGN1	30	30	30	30	30	50
SV006	VGN2	0	0	0	0	0	0
SV007	VIL	0	0	0	0	0	0
SV008	VIA	1364	1364	1364	1364	1364	1364
SV009	IQA	2048	2048	2048	2048	2048	2048
SV010	IDA	2048	2048	2048	2048	2048	2048
SV011	IQG	512	512	512	512	256	256
SV012	IDG	512	512	512	512	512	512
SV013	ILMT	500	500	500	500	500	500
SV014	ILMTsp	500	500	500	500	500	500
SV015	FFC	0	0	0	0	0	0
SV016	LMC1	0	0	0	0	0	0
SV017	SPEC	0000	0000	0000	0000	0000	0000
SV018	PIT	-	-	-	-	-	-
SV019	RNG1	-	-	-	-	-	-
SV020	RNG2	-	-	-	-	-	-
SV021	OLT	60	60	60	60	60	60
SV022	OLL	150	150	150	150	150	150
SV023	OD1	6	6	6	6	6	6
SV024	INP	50	50	50	50	50	50
SV025	MTYP	xx30	xx31	xx3A	xx32	xx33	xx34
SV026	OD2	6	6	6	6	6	6
SV027	SSF1	4000	4000	4000	4000	4000	4000
SV028		0	0	0	0	0	0
SV029	VCS	0	0	0	0	0	0
SV030	IVC	0	0	0	0	0	0
SV031	OVS1	0	0	0	0	0	0
SV032	TOF	0	0	0	0	0	0
SV033	SSF2	0000	0000	0000	0000	0000	0000

N	lotor	HA 53L	HA 103L	HA 153L	HA 203L	HA 303L	HA 503L
	ve unit pacity	10	20	20	35	45	70
SV034	SSF3	0000	0000	0000	0000	0000	0000
SV035	SSF4	0000	0000	0000	0000	0000	0000
SV036	PTYP	0000	0000	0000	0000	0000	0000
SV037	JL	0	0	0	0	0	0
SV038	FHz1	0	0	0	0	0	0
SV039	LMCD	0	0	0	0	0	0
SV040	LMCT	0	0	0	0	0	0
SV041	LMC2	0	0	0	0	0	0
SV042	OVS2	0	0	0	0	0	0
SV043	OBS1	0	0	0	0	0	0
SV044	OBS2	0	0	0	0	0	0
SV045	TRUB	0	0	0	0	0	0
SV046		0	0	0	0	0	0
SV047	EC	100	100	100	100	100	100
SV048	EMGrt	0	0	0	0	0	0
SV049	PGN1sp	15	15	15	15	15	15
SV050	PGN2sp	0	0	0	0	0	0
SV051	DFBT	0	0	0	0	0	0
SV052	DFBN	0	0	0	0	0	0
SV053	OD3	0	0	0	0	0	0
SV054	ORE	0	0	0	0	0	0
SV055	EMGx	0	0	0	0	0	0
SV056	EMGt	0	0	0	0	0	0
SV057	SHGC	0	0	0	0	0	0
SV058	SHGCsp	0	0	0	0	0	0
SV059	TCNV	0	0	0	0	0	0
SV060	TLMT	0	0	0	0	0	0
SV061	DA1NO	0	0	0	0	0	0
SV062	DA2NO	0	0	0	0	0	0
SV063	DA1MPY	0	0	0	0	0	0
SV064	DA2MPY	0	0	0	0	0	0
SV065		0	0	0	0	0	0

7. Servo Parameters 7.4 Supplement


7.4 Supplement

7.4.1 D/A Output Specifications

(1) MDS-B-SVJ2

(a) D/A output specifications

ltem	Explanation
No. of channels	2ch
Output cycle	888µs (min. value)
Output precision	8bit
Output voltage	-10V to 0 to +10V
range	
Output scale	\pm 1/256 to \pm 128 times
setting	
Output pins	CN3 connector
	MO1 = pin 4
	MO2 = pin 14
	GND = pin 1,11
Function	Offset amount adjustment function
	Output clamp function
	Low path filter function
Option	Relay terminal: MR-J2CN3TM
	Connect from the CN3 connector using the SH21 cable as a
	lead-in wire.

(b) Setting the output data

Set the No. of the data to be outputted to each D/A output channel.

#	No.	Abbrev	Parameter name
2261	SV061	DA1NO	D/A output channel 1 data No.
2262	SV062	DA2NO	D/A output channel 2 data No.

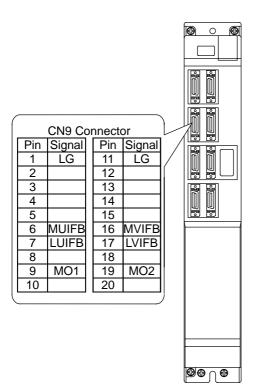
No.	Output data	Standard	Output
NO.		output unit	cycle
0	0V test output	For offset amount a	djustment
1	Speed feedback	1000rpm / 2V	888µs
2	Current feedback	Stall (rated) 100% / 2V	888µs
3	Speed command	1000rpm / 2V	888µs
4	Current command	Stall (rated) 100% / 2V	888µs
5	V-phase current value	10A / V	888µs
6	W-phase current-value	10A / V	888µs
7	Estimated disturbance torque	Stall (rated) 100% / 2V	888µs
8	Collision detection disturbance torque	Stall (rated) 100% / 2V	888µs
9	Position feedback (stroke)	100mm / V	3.55ms
10	Position feedback (pulse)	10µm / V	3.55ms
11	Position droop	mm / V	3.55ms
12	Position droop (x10)	100µm / V	3.55ms
13	Position droop (x100)	10µm / V	3.55ms
14	Feedrate $(F\Delta T)$	10000(mm/min) / V	888µs
15	Feedrate (FAT x 10)	1000(mm/min) / V	888µs
16	Model position droop	mm / V	3.55ms
17	Model position droop (x10)	100µm / V	3.55ms
18	Model position droop (x100)	10µm / V	3.55ms
19	q-axis current cumulative value	_	888µs
20	d-axis current cumulative value	_	888µs
21	Motor load level	100% / 5V	113.7ms
22	Amplifier load level	100% / 5V	113.7ms
23	Regenerative load level	100% / 5V	910.2ms
24	PN bus wire voltage	50V / V (1/50)	888µs
25	Speed cumulative item	_	888µs
26	Cycle counter	0-5V (Regardless of resolution)	888µs
27	Excessive error detection amount	mm / V	3.55ms
28	Collision detection estimated torque	Stall (rated) 100% / 2V	888µs
29	Position command (stroke)	100mm / V	3.55ms
30	Position command (pulse)	10µm / V	3.55ms
31 to 99	-	•	
100	5V test output	-	-
101	Saw-tooth wave test output	-5 to 5V Cycle: 113.7ms	888µs
102	Rectangular wave test output	0 to 5V Cycle: 227.5ms	888µs
103 to	Setting prohibited		

(c) Setting the output scale

When "0" is set, the output will be made with the standard output unit. To change the output unit, set a value other than "0".

The scale is set with a 1/256 unit. When 256 is set, the unit will be the same as the standard output.

#	No.	Abbrev	Parameter name
2263	SV063	DA1MPY	D/A output channel 1 output scale
2264	SV064	DA2MPY	D/A output channel 2 output scale


(Example 1) When SV061 = 5, SV063 = 2560 The V-phase current value will be output with 1 A/V unit to D/A output ch.1.

(Example 2) When SV063 = 11, SV064 = 128 The position droop will be output with a 2mm/Vunit to D/A output ch.2.

(2) MDS-C1-Vx, MDS-B-Vx, MDS-B-Vx4

(a) D/A Output specifications

Item	Explanation
No. of channels	2ch
Output cycle	888µs (min. value)
Output precision	8bit
Output voltage	0V to 2.5V to +5V
Output scale	±1/256 to ±128 times
setting	
Output pins	CN9 connector
	MO1 = pin 9
	MO2 = pin 19
	GND = pin 1,11
Function	Phase current feed back output function
	L-axis U-phase current FB : pin 7
	L-axis V-phase current FB : pin 17
	M-axis U-phase current FB : pin 6
	M-axis V-phase current FB : pin 16
Option	An drive unit with 2 axes also has 2 channels for D/A output. Therefore, set the output data of the axis (SV061,62), which is not observed, to "-1".

(b) Setting the output data

Set the No. of the data to be outputted to each data D/A output channel.

#	No.	Abbrev	Parameter name
2261	SV061	DA1NO	D/A output channel 1 data No.
2262	SV062	DA2NO	D/A output channel 2 data No.

No.	Output data	Standard output unit	Standard setting value of output scale (Setting values in SV063, SV064)	Standard output unit	Output cycle
-1	D/A output non-selected	For a drive unit. with axis which is not use	2 axes (MDS-C1-V2) ed.	. Set for the parame	eter of the
	ch1: Speed feedback	r/min	13 (in case of 2000rpm)	1000rpm / V	3.55ms
0			9 (in case of 3000rpm)	1500rpm / V	3.55ms
	ch2: Current command	Stall%	131	Stall 100% / V	3.55ms
1	Current command	Stall%	131	Stall 100% / V	3.55ms
2 3 4 5	Current feedback	Stall%	131	Stall 100% / V	3.55ms
6	– Position droop	NC display unit / 2	328 (When the display unit=1µm)	10µm / 0.5V	3.55ms
7 8	– Feedrate (F∆T)	(NC display unit / 2) / communication cycle	55 (When 1µm, 3.5ms)	1000 (mm/min) / 0.5V	3.55ms
9	_		000		
10	Position command	NC display unit / 2	328 (When the display unit=1µm)	10µm / 0.5V	3.55ms
11	_		220		
12	Position feedback	NC display unit / 2	328 (When the display unit=1µm)	10µm / 0.5V	3.55ms
13					
14	Collision detection estimated torque	Stall%	131	Stall 100% / V	3.55ms
15	Collision detection disturbance torque	Stall%	131	Stall 100% / V	3.55ms
64	Current command (High-speed)	Internal unit	8 (adjustment required)	_	888µs
65	Current feedback (High-speed)	Internal unit	8 (adjustment required)	-	888µs

(To be continued to the next page)

			(Continued from the previous page)			
No.	Output data	Standard output unit	Standard setting value of output scale (Setting values in SV063, SV064)	Standard output unit	Output cycle	
77	Estimated disturbance torque	Internal unit	8 (adjustment required)	-	888µs	
125	Saw-tooth wave test output	0V to 5V	0 (256)	Cycle: 227.5ms	888µs	
126	Rectangular wave test output	0V to 5V	0 (256)	Cycle: 1.7ms	888µs	
127	2.5V (data 0) test output	2.5V	0 (256)	_	888µs	

(c) Setting the output scale

#	No.	Abbrev	Parameter name
2263	SV063	DA1MPY	D/A output channel 1 output scale
2264	SV064	DA2MPY	D/A output channel 2 output scale

Usually, the standard setting value is set for the output scale (SV063, SV 064). When "0" is set, the output will be made as well as when "256" is set.

DATA x
$$\frac{SV063}{256}$$
 x $\frac{5[V]}{256(8bit)}$ + 2.5 [V] (offset) = Output voltage [V]

(Example) When outputting the current FB with 100%/V-stall (SV061=3, SV063=131)

100 x
$$\frac{131}{256}$$
 x $\frac{5}{256}$ + 2.5 = 3.499 [V]

7.4.2 Electronic Gears

The servo drive unit has internal electronic gears. The command value from the NC is converted into a detector resolution unit to carry out position control. The electronic gears are single gear ratios calculated from multiple parameters as shown below. However, each value (ELG1, ELG2) must be less than 32767.

If the value overflows, the initial parameter error (alarm 37) or error parameter No. 2301 will be output.

If an alarm occurs, the mechanical specifications and electrical specifications must be revised so that the electronic gears are within the specifications range.

<Semi-closed loop>

$$\frac{ELG1}{ELG2} = \frac{RNG1 \times PC2}{PIT \times PC1 \times IUNIT}$$
 (Reduced fraction)

<Closed loop>

$$\frac{ELG1}{ELG2} = \frac{PGN \times RNG2 \times PC2}{30 \times RNG1 \times PC1}$$
 (Reduced fraction)

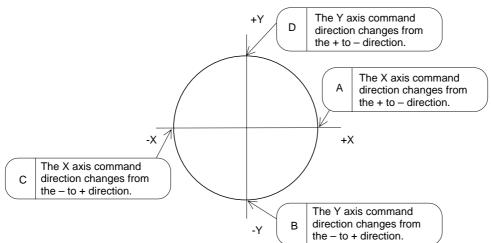
IUNIT = 2/NC command unit (
$$\mu$$
m)
1 μ m : IUNIT = 2, 0.1 μ m : IUNIT = 20

When the above is calculated, the following conditions must be satisfied.

ELG1 ≤ 32767 ELG2 ≤ 32767

7.4.3 Lost Motion Compensation

When the motor is to rotate in the clockwise direction (looking from the load side) at the command for the + direction, the command direction is CW. Conversely, when the motor is to rotate in the counterclockwise direction, the command direction is CCW.


This rotation direction can be set with the CNC machine parameters. Note that the meaning of the \pm will differ for some servo parameters according to this motor rotation direction. The servo parameters affected by CW/CCW are shown below.

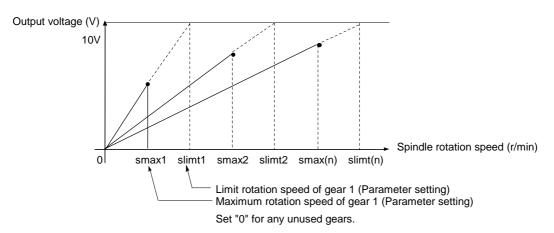
SV016	(LMC1),	SV041	(LMC2)
SV031	(OVS1),	SV042	(OVS2)

(When different values are set for SV016 and SV041) (When different values are set for SV031 and SV042)

<Example> If the lost motion compensation amount is to be changed according to the direction, the compensation amount at the quadrant changeover point of each arc where the lost motion compensation is applied will be as shown below according to the command polarity.

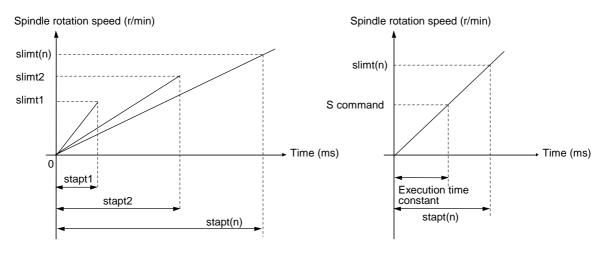
	CW	CCW		
A	X: SV041	X: SV016		
В	Y: SV016	Y: SV041		
С	X: SV016	X: SV041		
D	Y: SV041	Y: SV016		

(Note) The setting value for the parameter is "0" or "-1", the compensation amount is determined as shown below.


Setting value for SV016 (Setting value for SV031)	Setting value for SV041 (Setting value for SV041)	Compensation amount in + direction	Compensation amount in - direction
0	0	No compensation	No compensation
n	0	n	n
0	m	m	m
n	m	n	m
n	-1	n	No compensation
-1	m	No compensation	m

8. Spindle Parameters

8.1 Spindle Base Specifications Parameters


For parameters indicated with a (PR) in the table, turn the NC power OFF after setting. The setting is validated after the power is turned ON again.

No.			Items	Details	Setting range (Unit)
3001	slimit		Limit rotation	Set spindle rotation speed for maximum motor	0 to 99999 (r/min)
3002		2	speed	rotation speed with gears 00, 01, 10, 11. (Set the spindle rotation speed for the S analog	
3003		3		output 10V.)	
3004		4			
3005	smax	1	Maximum	Set maximum spindle speed with gears 00, 01,	
3006		2	rotation speed	10, 11. Set the value that is equal to or larger than "slimit"	
3007		3		value.	
3008		4		By comparing the S command value of gear 1 to 4, a spindle gear shift command will be output	
				automatically.	
3009	ssift	1	Shift rotation	Set spindle rotation speed for gear shifting with	0 to 32767 (r/min)
3010		2	speed	gears 00, 01, 10, 11.	
3011		3		(Note) Setting too large value may cause a gear nicks when changing gears.	
3012		4		nicks when changing years.	
3013	stap	1	Tap rotation	Set maximum spindle rotation speed during tap	0 to 99999 (r/min)
3014		2	speed	cycle with gears 00, 01, 10, 11.	
3015		3			
3016		4			
3017	stapt	1	Tap time	Set time constants for constant inclination	1 to 5000 (ms)
3018		2	constant	synchronized tapping for gears 00, 01, 10, 11 (linear acceleration/deceleration pattern).	
3019		3			
3020		4			

Relationship between spindle limit rotation speed and maximum spindle rotation speed

Relation between the spindle limit rotation speed and the spindle tap time constant (for the constant inclination synchronized tapping)

#	I	tems	Details	Setting range (Unit)
3021	sori	Orientation rotation speed	Set the spindle orientation rotation speed. Set the rotation speed for when the spindle rotates at the constant rotation speed.	0 to 32767 (r/min)
3022	sgear	Encoder gear ratio	Set the gear ratio of the spindle to the encoder.	0: 1/1 1: 1/2 2: 1/4 3: 1/8
3023	smini	Minimum rotation speed	Set the minimum rotation speed of the spindle. If an S command instructs the rotation speed below this setting, the spindle rotates at the minimum rotation speed set with this parameter.	0 to 32767 (r/min)
3024 (PR)	sout	Spindle connection	Set the type of the spindle to be connected. 0: No connection with the spindle 1: Serial connection (bus) 2 to 5: Analog output	0 to 5
3025	enc-on	Spindle encoder	Set connection information of the spindle encoder. 0: No connection 1: Spindle connection (Spindle encoder connection check function valid.) 2: Serial connection of encoder	0 to 2
3026	cs_ori	Selection of winding in orientation mode	 Perform orientation using the winding selected when the orientation command is issued. Use winding L whenever the orientation command is issued. 	0/1
3027	cs_syn	Selection of winding in spindle synchronou s mode	 The winding H/L is selected by the actual spindle rotation speed (calculated from commanded rotation speed) when spindle synchronous control starts. (The winding is not switched during synchronous control. The control is carried out with the winding selected at start.) If the actual spindle rotation speed is less than SP020, the winding L is selected, and if more than the value, the winding H is selected. Use winding H whenever the spindle synchronous command is issued. 	0/1
3028	sprcmm	L system tap cycle spindle forward run/ reverse run M command	Set the M code of the spindle forward run/reverse run command. High-order three digits : The spindle forward run command's M code is set. Low-order three digits : The spindle reverse run command's M code is set.	0 to 999999

#		Items	Details	Setting range (Unit)	
3037 3038 3039 3040	tapt 21 22 23 24	Synchronized tapping Switching spindle rota- tion speed 2	Set the spindle rotation speed at which the step-2 acceleration/deceleration time constant is to be switched at gear 00, 01, 10, or 11.	0 to 99999 (r/min)	
3041 3042 3043 3044	tapt 21 22 23 24	Synchronized tapping Switching time constant 2	Set the time constant to reach Synchronized tapping switching spindle rotation speed 2 (#3037 to #3040) at gear 00, 01, 10, or 11.	1 to 5000 (ms)	
3045 3046 3047 3048	tapt 31 32 33 34	Synchronized tapping Switching time constant 3	Set the time constant to reach the maximum rotation spindle speed (#3005 to #3008) at gear 00, 01, 10, or 11.	1 to 5000 (ms)	
3049	spt	Spindle synchroniza- tion acceleration/ deceleration time constant	Set the acceleration/deceleration time constant for when the spindle synchronization command's rotation speed changes during spindle synchronous control.	0 to 9999 (ms)	
3050	sprlv	Spindle synchroniza- tion rotation speed attainment level	The spindle rotation speed synchronization complete signal will turn ON when the difference of the reference spindle and synchronous spindle actual rotation speeds is less than the level set for the synchronous spindle rotation speed command value during spindle synchronous control.	0 to 4095 (pulse) (1 pulse = 0.088°)	
3051	spplv	Spindle phase synchroniza- tion attainment level	The spindle phase synchronization complete signal will turn ON when the phase difference of the reference spindle and synchronous spindle is less than the set level during spindle phase synchronization control.	0 to 4095 (pulse) (1 pulse = 0.088°)	
3052	spplr	Spindle motor spindle relative polarity	Set the spindle motor and spindle's relative polarity. Spindle CW rotation at motor CW rotation : Positive polarity Spindle CCW rotation at motor CW rotation : Negative polarity	0: Positive polarity 1: Negative polarity	
3053	sppst	Spindle encoder Z -phase position	Set the deviation amount from the spindle's reference position to the spindle encoder's Z phase. The deviation amount is obtained using the clockwise direction looking from the front of the spindle as the positive direction.	0 to 359999 (1/1000°)	

#		Items	Details	Setting range (Unit)
3054	sptc1	Spindle synchroniza- tion multi-step acceleration/ deceleration changeover speed 1	Set the spindle speed for changing the 1st step's acceleration/deceleration time constant.	0 to 99999 (r/min)
3055	sptc2	Spindle synchroniza- tion multi-step acceleration/ deceleration changeover speed 2	Set the spindle speed for changing the 2nd step's acceleration/deceleration time constant.	0 to 99999 (r/min)
3056	sptc3	Spindle synchroniza- tion multi-step acceleration/ deceleration changeover speed 3	Set the spindle speed for changing the 3rd step's acceleration/deceleration time constant.	0 to 99999 (r/min)
3057	sptc4	Spindle synchroniza- tion multi-step acceleration/ deceleration changeover speed 4	Set the spindle speed for changing the 4th step's acceleration/deceleration time constant.	0 to 99999 (r/min)
3058	sptc5	Spindle synchroniza- tion multi-step acceleration/ deceleration changeover speed 5	Set the spindle speed for changing the 5th step's acceleration/deceleration time constant.	0 to 99999 (r/min)
3059	sptc6	Spindle synchroniza- tion multi-step acceleration/ deceleration changeover speed 6	Set the spindle speed for changing the 6th step's acceleration/deceleration time constant.	0 to 99999 (r/min)

#		Items	Details	Setting range (Unit)
3060	sptc7	Spindle synchroniza- tion multi-step acceleration/ deceleration changeover speed 7	Set the spindle speed for changing the 7th step's acceleration/deceleration time constant.	0 to 99999 (r/min)
3061	spdiv1	Magnification for time constant changeover speed 1	Set the acceleration/deceleration time constant between the spindle synchronization multi-step acceleration/deceleration changeover speed 1 (sptc1) to the spindle synchronization multi-step acceleration/deceleration changeover speed 2 (sptc2) as a magnification in respect to the spindle synchronization acceleration/deceleration time constant (spt).	0 to 127
3062	spdiv2	Magnification for time constant changeover speed 2	Set the acceleration/deceleration time constant between the spindle synchronization multi-step acceleration/deceleration changeover speed 2 (sptc2) to the spindle synchronization multi-step acceleration/deceleration changeover speed 3 (sptc3) as a magnification in respect to the spindle synchronization acceleration/deceleration time constant (spt).	0 to 127
3063	spdiv3	Magnification for time constant changeover speed 3	Set the acceleration/deceleration time constant between the spindle synchronization multi-step acceleration/deceleration changeover speed 3 (sptc3) to the spindle synchronization multi-step acceleration/deceleration changeover speed 4 (sptc4) as a magnification in respect to the spindle synchronization acceleration/deceleration time constant (spt).	0 to 127
3064	spdiv4	Magnification for time constant changeover speed 4	Set the acceleration/deceleration time constant between the spindle synchronization multi-step acceleration/deceleration changeover speed 4 (sptc4) to the spindle synchronization multi-step acceleration/deceleration changeover speed 5 (sptc5) as a magnification in respect to the spindle synchronization acceleration/deceleration time constant (spt).	0 to 127
3065	spdiv5	Magnification for time constant changeover speed 5	Set the acceleration/deceleration time constant between the spindle synchronization multi-step acceleration/deceleration changeover speed 5 (sptc5) to the spindle synchronization multi-step acceleration/deceleration changeover speed 6 (sptc6) as a magnification in respect to the spindle synchronization acceleration/deceleration time constant (spt).	0 to 127

#		Items	Details	Setting range (Unit)
3066	spdiv6	Magnification for time constant changeover speed 6	Set the acceleration/deceleration time constant between the spindle synchronization multi-step acceleration/deceleration changeover speed 6 (sptc6) to the spindle synchronization multi-step acceleration/deceleration changeover speed 7 (sptc7) as a magnification in respect to the spindle synchronization acceleration/deceleration time constant (spt).	0 to 127
3067	spdiv7	Magnification for time constant changeover speed 7	Set the acceleration/deceleration time constant for the spindle synchronization multi-step acceleration/deceleration changeover speed 7 (sptc7) and higher as a magnification in respect to the spindle synchronization acceleration/deceleration time constant (spt).	0 to 127
3068	symtm1	Phase synchroniza- tion start confirmation time	Set the time to confirm that synchronization is attained before phase synchronization control is started. When "0" is set, the time will be 2 seconds. When "100" or less is set, the time will be 100ms.	0 to 9999 (ms)
3069	symtm2	Phase synchroniza- tion end confirmation time	Set the time to wait for phase synchronization control to end as the time for the rotation speed to reach the attainment range. When "0" is set, the time will be 2 seconds. When "100" or less is set, the time will be 100ms.	0 to 9999 (ms)
3070	syprt	Phase synchroniza- tion speed	Set the fluctuation amount to change the synchronous spindle rotation speed during phase synchronization control as the command speed and rate. When "0" is set, the amount will be 100%.	0 to 100 (%)
3071		(Not used.)		
3072		(Not used.)		

8.2 MDS-B-SPJ2

For parameters marked with a (PR) in the tables, turn the NC power OFF after setting. The parameters will be valid after the power is turned ON again.

The valid spindle parameters will differ according to the motor and amplifier type. Follow the correspondence table given below, and set the correct parameters.

The spindle parameter setting and display method will differ according to the NC being used, so refer to Instruction Manual for each NC and the following spindles.

MELDAS AC Servo and Spindle MDS-A Series MDS-B Series Specifications Manual ... BNP-B3759

The "fixed control constants" and "fixed control bits" in this section are set by Mitsubishi.

/! Do not make remarkable adjustments or changes of the parameters as the operation may become unstable.

/! In the explanation on bits, set all bits not used, including blank bits, to "0".

No.		lte	ms	Details	Setting range	Standard setting	
3201	SP001	PGM	Magnetic detector and motor built- in encoder orientation- mode position loop gain	As the set value is larger, the orientation time becomes shorter and servo rigidity is increased. On the contrary, however, vibration is increased and the machine becomes likely to overshoot.	0 to 1000 (0.1 1/s)	100	
3202	SP002	PGE	Encoder orientation-mo de position loop gain	As the set value is larger, the orientation time becomes shorter and servo rigidity is increased. On the contrary, however, vibration is increased and the machine becomes likely to overshoot.	0 to 1000 (0.1 1/s)	100	
3203	SP003			Not used. Set to "0".	0	0	
3204	SP004	OINP	Orientation in-position width	Set the position error range in which an orientation completion signal is output.	1 to 2880 (1/16°)	16	
3205 (PR)	SP005	OSP	Orientation mode changing speed limit value	Set the motor speed limit value to be used when the speed loop is changed to the position loop in orientation mode. When this parameter is set to "0", SP017 (TSP) becomes the limit value.	0 to 32767 (r/min)	0	
3206	SP006	CSP	Orientation mode dece- leration rate	As the set value is larger, the orientation time becomes shorter. On the contrary, however, the machine becomes likely to overshoot.	1 to 1000	20	
3207	SP007	OPST	In-position shift amount for orientation	Set the stop position for orientation. Set the value by dividing 360° by 4096.	0 to 4095	0	
3208	SP008			Not used. Set to "0".	0	0	
3209	SP009	PGT	Synchronous tapping position loop gain	Set the spindle position loop gain in synchronous tapping mode.	1 to 100 (1/s)	15	

No.		lte	ems	Details	Setting range	Standard setting	
3210	SP010	PGS	Spindle synchronous position loop gain	Set the spindle position loop gain in spindle synchronization mode.	1 to 100 (1/s)	15	
3211 to 3216	SP011 to SP016			Use not possible.	0	0	
3217 (PR)	SP017	TSP	Maximum motor speed	Set the maximum motor speed of the spindle.	1 to 32767 (r/min)	6000	
3218 (PR)	SP018	ZSP	Motor zero speed	Set the motor speed for which zero-speed output is performed.	1 to 1000 (r/min)	50	
3219 (PR)	SP019	CSN1	Speed cushion 1	Set the time constant for a speed command from "0" to the maximum speed. (This parameter is invalid in position loop mode.)	0 to 32767 (10ms)	30	
3220 (PR)	SP020	SDTS	Speed detection set value	Set the motor speed so for which speed detection output is performed. Usually, the setting value is 10% of SP017 (TSP).	0 to 32767 (r/min)	600	
3221	SP021	TLM1	Torque limit 1	Set the torque limit rate for torque limit signal 001.	0 to 120 (%)	10	
3222 (PR)	SP022	VGNP1	Speed loop gain proportional term under speed control	Set the speed loop proportional gain in speed control mode. When the gain is increased, response is improved but vibration and sound become larger.	0 to 1000 (1/s)	63	
3223 (PR)	SP023	VGNI1	Speed loop gain integral term under speed control	Set the speed loop integral gain in speed control mode. Usually, set a value in proportion to SP022 (VGNP1).	0 to 1000 (0.1 1/s)	60	
3224	SP024			Not used. Set to "0".	0	0	
3225 (PR)	SP025	GRA1	Spindle gear teeth count 1	Set the number of gear teeth of the spindle corresponding to gear 000.	1 to 32767	1	
3226 (PR)	SP026	GRA2	Spindle gear teeth count 2	Set the number of gear teeth of the spindle corresponding to gear 001.	1 to 32767	1	
3227 (PR)	SP027	GRA3	Spindle gear teeth count 3	Set the number of gear teeth of the spindle corresponding to gear 010.	1 to 32767	1	
3228 (PR)	SP028	GRA4	Spindle gear teeth count 4	Set the number of gear teeth of the spindle corresponding to gear 011.	1 to 32767	1	
3229 (PR)	SP029	GRB1	Motor shaft gear teeth count 1	Set the number of gear teeth of the 1 to 32 motor shaft corresponding to gear 000.		1	
3230 (PR)	SP030	GRB2	Motor shaft gear teeth count 2	Set the number of gear teeth of the motor shaft corresponding to gear 001.1 to 32767		1	
3231 (PR)	SP031	GRB3	Motor shaft gear teeth count 3	Set the number of gear teeth of the motor shaft corresponding to gear 010.	1 to 32767	1	
3232 (PR)	SP032	GRB4	Motor shaft gear teeth count 4	Set the number of gear teeth of the motor shaft corresponding to gear 011.	1 to 32767	1	

No.	Item	S	Details Setting range	Standard setting
3233 (PR)	SP033 SFNC1	Spindle function 1	F E D C B A 9 8 poff hzs ront	0000
3234 (PR)	SP034 SFNC2	Spindle function 2		0000

No.	lt	tems	Details Setting range	Standard setting
3235 (PR)	SP035 SFN	C3 Spindle function3	Set the spindle function 3 in bit units. 0000 to F E D C B A 9 8 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 V Image: Set To To The Set To To The Empty bits. Image: Set To To The Set To To The Set To To The Set To To To To To To To To To To To To To	0000
3236 (PR)	SP036 SFN	C4 Spindle function 4	Set the spindle function 4 in bit units. F E D C B A 9 8 7 6 5 4 3 2 1 0 1 enc2 enc1 mag2 mag1 plg2 plg1 (Note) Always set "0" for the empty bits. bit Name Meaning when set to 0 Meaning when set to 1 0 plg1 PLG of motor 1 valid PLG of motor 1 invalid 1 plg2 PLG of motor 2 valid PLG of motor 1 invalid 2 mag1 MAG of motor 1 valid ENC of motor 1 invalid 3 mag2 MAG of motor 2 valid MAG of motor 2 invalid 4 enc1 ENC of motor 1 valid ENC of motor 1 invalid 5 enc2 ENC of motor 2 valid ENC of motor 1 invalid 6	

No.		Item	S				Det	ails				Setting range	Standard setting
3237 (PR)	SP037	SFNC5	Spindle function 5	Set th	ne sp E	indle fu D	nction C	n 5 in B	bit uni A	ts. 9	8	0000 to FFFF	0000
											nstv	HEX setting	
				7	6	5	4	3	2 plgo	1	0 enco		
				(Note	e) Alv	vays set	"0" for	the e		its.	1 1		
				bit N		Meaning							
				0	enco	Encoder o invalid	orientatio	n	Encoder valid	orienta	ation		
				1	plgo	PLG orien	tation in	valid	PLG orie	entatior	n valid		
				3									
				5									
				6									
				8	nstv	No-signal (Always m	detectio ionitorin	n type g)	Monitori position orientati	loop or			
				9 A									
				В									
				C D									
				E F									
3238 (PR)	SP038	SFNC6	Spindle function 6	Set th	ne sp	indle fu	nctior C	n 6 in B	bit uni A	ts. 9	8	0000 to FFFF	0000
				opl	р							HEX setting	
				7		<u> </u>	4	3	2 pftm	1	0 alty		
				bit N		Ways se <u>Meaning</u> Decelerati special ala	when se	et to 0 during	Meaning	g when ation sto	set to 1		
				2	pftm	Thread cu data invali	tting pos d	sition	Thread of data vali	cutting d	position		
				4									
				5 6									
				7									
				9									
				A B									
				C D									
				Е									
				F	oplp	Open loop invalid	operati	on	Open loo valid	op oper	ation		

No.		lten	IS		D	Setting range	Standard setting		
3239 (PR)	SP039	ATYP	Amplifier type	Set each a	nplifier type amplifier typ meter corre	MDS-B-SPJ2.	0000 to FFFF HEX setting	0000	
				Parame	eter setting	Amplifie	r type		
				(0000				
				(0001	SPJ2-02	2		
				(0002	SPJ2-04	ļ		
				(0003	SPJ2-07	75		
				(0004	SPJ2-15	5		
				(0005	SPJ2-22			
					0006	SPJ2-37			
				(0007	SPJ2-55	5		
				(0008	SPJ2-75			
				(0009	SPJ2-11	0/110C		
3240 (PR)	SP040	MTYP	Motor type	to 0. Refer to th		standard r	C2) bit 0 is set notors, and set	0000 to FFFF HEX setting	0000
				Paramete r setting	Motor type	Maximum speed	Corresponding amplifier		
				1000					
				1001	SJ-P0.2A	10000 r/min			
				1002	SJ-P0.4A	10000 r/min			
				1003 1004	SJ-P0.75A SJ-P1.5A	10000 r/min 10000 r/min			
				1004	SJ-P1.5A SJ-P2.2A	8000 r/min	SPJ2-15 SPJ2-22		
				1005	SJ-P2.2A SJ-P3.7A	8000 r/min	SPJ2-37		
				1000	SJ-PF5.5-01	8000 r/min			
				1008	SJ-PF7.5-01	8000 r/min	SPJ2-75		
				1009	SJ-PF11-01	6000 r/min	SPJ2-110/110C		

No.		ltem	S		Details	5		Setting range	Standard setting
3241 (PR)	SP041	РТҮР	Power supply type	power su Set "0" fo not a sig Select a	is unit is a signal c upply unit, set this or this parameter for nal connection axi value from the foll g to the regenerati	parameter or the unit s. owing table	which is e	0000 to FFFF HEX setting	0000
				Setting value	Regenerative resistance type	Resistance value (Ω)	Capacity (W)		
				0000 2000 2100 2200 2400 2500 2600 2700 2800 2900 2A00 2B00 2C00	- Not connected FCUA-RB04 FCUA-RB075 FCUA-RB15 FCUA-RB22 FCUA-RB37 FCUA-RB37 FCUA-RB55 FCUA-RB75/2 R–UNIT–1 R–UNIT–2 R–UNIT–3 R–UNIT–4 R–UNIT–5	- 200 100 60 40 25 20 30/15 30 15 15 15 10 10	- 60 80 120 155 185 340 340/680 700 700 2100 2100 3100		
					This setting is use FCUA-RB75/2 and parallel.				
3242 (PR)	SP042			Not used	d. Set to "0".			0	0
3243 (PR)	SP043			Not used	d. Set to "0".			0	0
3244 (PR)	SP044	TRANS	NC communi- cation frequency	Set a fre NC.	quency of data co	mmunicatio	on with	0 to 32767	Standard: 0 Special: 1028
3245	SP045			Not used	d. Set to "0".			0	0
3246 (PR)	SP046	CSN2	Speed command dual cushion	defined i used to p start of a As the va moves s accelera longer.	cceleration/decele n SP019 (CSN1) , provide smooth mo acceleration/decele alue of this parame moother but the tion/deceleration ti e this parameter inv	0 to 1000	0		
3247 (PR)	SP047	SDTR	Speed detection reset value		eset hysteresis wie n set value defined			0 to 1000 (r/min)	30

No.		lte	ms	Details	Setting range	Standard setting
3248 (PR)	SP048	SUT	Speed reach range	Set the speed deviation rate with respect to the commanded speed for output of the speed reach signal.	0 to 100 (%)	15
3249	SP049	TLM2	Torque limit 2	Set the torque limit rate for the torque limit signal 010.	1 to 120 (%)	20
3250	SP050	TLM3	Torque limit 3	Set the torque limit rate for the torque limit signal 011.	1 to 120 (%)	30
3251	SP051	TLM4	Torque limit 4	Set the torque limit rate for the torque limit signal 100.	1 to 120 (%)	40
3252	SP052	TLM5	Torque limit 5	Set the torque limit rate for the torque limit signal 101.	1 to 120 (%)	50
3253	SP053	TLM6	Torque limit 6	Set the torque limit rate for the torque limit signal 110.	1 to 120 (%)	60
3254	SP054	TLM7	Torque limit 7	Set the torque limit rate for the torque limit signal 111.	1 to 120 (%)	70
3255 (PR)	SP055	SETM	Excessive speed deviation timer	Set the timer value until the excessive speed deviation alarm is output. The value of this parameter should be longer than the acceleration/deceleration time.	0 to 60 (s)	12
3256	SP056	PYVR	Variable excitation (min value)	Set the minimum value of the variable excitation rate. Select a smaller value when gear noise is too high. However, a larger value is effective for impact response.	0 to 100 (%)	50
3257 (PR)	SP057	STOD	Fixed control constant	Set by Mitsubishi. Set "0" unless designated in particular.	0	0
3258 to 3262	SP058 to SP062			Not used. Set to "0".	0	0
3263 (PR)	SP063	OLT	Overload alarm detection time	Set the time constant for detection of the motor overload alarm.	0 to 1000 (s)	60
3264 (PR)	SP064	OLL	Overload alarm detection level	Set the detection level of the motor overload alarm.	0 to 120 (%)	110
3265 (PR)	SP065	VCGN1	Target value of variable speed loop proportional gain	Set the magnification of speed loop proportional gain with respect to SP022 (VGNP1) at the maximum motor speed defined in SP017 (TSP).	0 to 100 (%)	100
3266 (PR)	SP066	VCSN1	Change starting speed of variable speed loop proportional gain	Set the speed for starting change of speed loop proportional gain. SP022 SP022× (SP065/100) SP066 SP017	0 to 32767 (r/min)	0

No.		lte	ems		Detai	ls		Setting range	Standard setting
3267 (PR)	SP067	VIGWA	Change starting speed of variable current loop gain	Set the speed loop gain.	for startir	ng change	of current	0 to 32767 (r/min)	0
3268 (PR)	SP068	VIGWB	Change ending speed of variable current loop gain	Set the speed loop gain.	for endin	g change	of current	0 to 32767 (r/min)	0
3269 (PR)	SP069	VIGN	Target value of variable current loop gain	Set the magni (torque compor- component) for defined in SP(When this par magnification SP069x(1/16)-	onent and or a chang 068 (VIGV ameter is is 1. ^{A Gain}	excitatior ge ending VB).	speed	0 to 32767 (1/16 -fold)	0
				1-	fold	7 SP068 \$	Speed		
				SP017 (TSP) Maximum motor speed	SP067 (VIGWA)	SP068 (VIGWB)	SP069 (VIGN)		
				0 to 6000	0	0	0		
				6001 to 8000	5000	8000	45		
				8001 or more	5000	10000	64		
3270	SP070			Not used. Set	to "0".			0	0
3271 (PR)	SP071	VR2WA	Fixed control constant	Set by Mitsubi Set "0" unless		ed in parti	cular.	0	0
3272 (PR)	SP072	VR2WB							
3273 (PR)	SP073	VR2GN							
3274 (PR)		IGDEC							
3275	SP075	R2KWS							

No.		lten	ns	Details	Setting range	Standard setting
3276	SP076			Not used. Set to "0".	0	0
3277	SP077	TDSL	Fixed control constant	Set by Mitsubishi. Set "0" unless designated in particular.	0	0
3278 (PR)	SP078	FPWM				
3279 (PR)	SP079	ILMT				
3280	SP080					
3281	SP081	LMCA				
3282	SP082	LMCB				
3283 to 3286	SP083 to SP086			Not used. Set to "0".	0	0
3287 (PR)	SP087	DIQM	Target value of variable torque limit magnification at deceleration	Set the minimum value of variable torque limit at deceleration.	0 to 150 (%)	75
3288 (PR)	SP088	DIQN	Speed for starting change of variable torque limit magnifica- tion at deceleration	SP087 Set the speed for starting change of torque Imit value at deceleration.	0 to 32767 (r/min)	3000
3289 to 3292	SP089 to SP092			Not used. Set to "0".	0	0
3293 (PR)	SP093	ORE	Fixed control constant	Set by Mitsubishi. Set "0" unless designated in particular.	0	0
3294 (PR)	SP094			Not used. Set to "0".	0	0
3295 (PR)	SP095	VFAV	Fixed control constant	Set by Mitsubishi. Set "0" unless designated in particular.	0	0

No.		lten	าร	Details	Setting range	Standard setting
3296 (PR)	SP096	EGAR	Encoder gear ratio	Set the gear ratio between the spindle end and the encoder end (except for the motor-built-in encoder) as indicated below.Setting Gear ratio (deceleration) 0 $1:1$ Setting ValueGear ratio (Acceleration) 0 $1:1$ -1 $1:2$ 1 $1:1/2$ -2 $1:4$ 2 $1:1/4$ -3 $1:3$ 3 $1:1/8$ -3 $1:3$	–3 to 4	0
3297 (PR)	SP097	SPECO	Orientation specifica- tion	Set the orientation specifications in bit units. F E D C B A 9 8 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 1 fdir pyfx dmin odi2 odi1 (Note) Always set "0" for the empty bits. bit Name Meaning when set to 0 Meaning when set to 1 0 odi1 Orientation rotation direction 0 0 odi2 00: Previous (the direction in which the motor has so far rotated under speed control) 01: Forward rotation 1 O: Previous (the direction in which the motor has so far rotated under speed control) 01: Forward rotation 10: Backward rotation 11: Prohibited (Same as setting value = 10) 0 2 dmin Dummy in-position Dummy in-position valid 3 pyfx Excitation min. (50%) during orientation servo lock valid 4 4	0000 to FFFF HEX setting	0000
3298 (PR)	SP098	VGOP	Speed loop gain propor- tional term in orientation mode	Set the speed loop proportional gain in orientation mode. When the gain is increased, rigidity is improved in the orientation stop but vibration and sound become larger.	0 to 1000 (1/s)	
3299 (PR)	SP099	VGOI	Orientation mode speed loop gain integral term	Set the speed loop integral gain in orientation mode.	0 to 1000 (0.1 1/s)	60
3300 (PR)	SP100	VGOD	Orientation mode speed loop gain delay advance term	Set the a loop gain delay advance gain in orientation mode. When this parameter is set to "0", PI control is exercised.	0 to 1000 (0.1 1/s)	15

No.		lte	ms	Details	Setting range	Standard setting
3301 (PR)	SP101	DINP	Orientation advance in-position width	When using the orientation in-position advance function, set the in-position width that is larger than the normal in-position width defined in SP004 (OINP).	1 to 2880 (1/16°)	16
3302 (PR)	SP102	OODR	Excessive error value in orientation mode	Set the excessive error width in orientation mode.	1 to 32767 (1/4 pulse) (1 pulse= 0.088°)	32767
3303 (PR)	SP103	FTM	Index positioning completion OFF time timer	Set the time for forcedly turn OFF the index positioning completion signal (different from the orientation completion signal) after the leading edge of the indexing start signal.	1 to 10000 (ms)	200
3304 (PR)	SP104	TLOR	Torque limit value for orientation servo locking	Set the torque limit value for orientation in-position output. If the external torque limit signal is input the torque limit value set by this parameter is made invalid.	1 to 120 (%)	100
3305 (PR)	SP105	IQG0	Current loop gain magnifica- tion 1 in orientation mode	Set the magnification for current loop gain (torque component) at orientation completion.	1 to 1000 (%)	100
3306	SP106	IDG0	Current loop gain magnifica- tion 2 in orientation mode	Set the magnification for current loop gain (excitation component) at orientation completion.	1 to 1000 (%)	100
3307	SP107	CSP2	Deceleration rate 2 in orientation mode	Set the deceleration rate in orientation mode corresponding to the gear 001. When this parameter is set to "0", same as SP006 (CSP).	0 to 1000	0
3308	SP108	CSP3	Deceleration rate 3 in orientation mode	Set the deceleration rate in orientation mode corresponding to the gear 010. When this parameter is set to "0", same as SP006 (CSP).	0 to 1000	0
3309 (PR)	SP109	CSP4	Deceleration rate 4 in orientation mode	Set the deceleration rate in orientation mode corresponding to the gear 011. When this parameter is set to "0", same as SP006 (CSP).	0 to 1000	0
3310 (PR)	SP110	WCML	Turret index command magnifica- tion	The integer magnification (gear ratio 1 : N) for the index position command (0 to 359) is set.	0 to 32767 (fold)	0
3311	SP111	WDEL	Turret index deceleration magnifica- tion	The magnification for the orientation deceleration rate is set using 256 as 1.	0 to 32767 (1/256 -fold)	0
3312	SP112	WCLP	Turret index clamp speed	The max. speed during indexing is set. This becomes the max. speed of the motor when set to "0".	0 to 32767 (r/min)	0

No.		Iten	ns	Details	Setting range	Standard setting
3313 (PR)	SP113	WINP	Turret index in-position width	The position error range is set in which an orientation (indexing) completed signal is output during turret indexing. This becomes the same as SP004 (OINP) when set to "0".	0 to 32767 (1/16°)	0
3314	SP114	OPER	Orientation pulse miss check value	An alarm "5C" will occur if the pulse miss value in the orientation stop exceed this setting value. (Note that this is invalid when set to "0".) In this parameter, set the value to fulfill the following conditions. SP114 setting value > 1.5 × SP004 (orientation in-position width)	0 to 32767 (360°/4096)	0
3315	SP115	OSP2	Orientation changeover speed limit value 2	When the door interlock spindle speed clamp signal is ON, this setting is used instead of OSP(SP005), CZRN(SP149) and TZRN(SP214). (Note that SP149 and SP214 are used only for the M65V.)	0 to 32767 (r/min)	0
3316	SP116	OPYVR	Fixed control constants	Set by Mitsubishi. Set "0" unless designated in particular.	0	0
3317	SP117	ORUT				
3318	SP118	ORCT	Number of orientation retry times	Set the number of times to retry when an orientation or feedback error occurs. The warning (A9) is issued while retrying orientation, and an alarm (5C) is issued when the set number of times is exceeded.	0 to 100 (time)	0
3319 to 3376	SP119 to SP176			Not used. Set to "0".	0	0

No.		Iter	ns	Details								Setting range	Standard setting	
3377 (PR)	SP177	SPECS	Spindle synchronous specifica-		inits.		dle sy D	nchro C	onous B	speci A	ficatio 9	ons in 8	0000 to FFFF HEX	0000
			tions	Ē		-	odx8	0					setting	
				7		6	5 fdir	4	3 pyfx	2	1	0 fclx		
				(No	te) /	Alwa		"0" fo		empty b	oits.	ICIX		
				bit 0	Name fclx		eaning v		et to 0	Meaning Semi-clo		set to 1		
				2 3	pyfx	Nc	ormal exe	citation		Position fixed (st		citation		
				4 5 6	fdir		sition de larity (+)	etector		Position polarity		r		
				7 8 9										
				A B C										
				D	odx8	ex	agnificati cessive imes inv	error wi		Magnific excessiv 8 times	/e error			
				E F										
3378 (PR)	SP178	VGSP	Spindle synchronous speed loop gain propor- tional term				ed loo tion m		portio	nal ga	iin in s	spindle	0 to 1000 (1/s)	63
3379 (PR)	SP179	VGSI	Spindle synchronous speed loop gain integral term				ed loo tion m		gral (gain in	spino	lle	0 to 1000 (0.1 1/s)	60
3380 (PR)	SP180	VGSD	Spindle synchronous speed loop gain delay advance term	spin Whe	dles	sync iis p	chroni	zatior	moc		•	in ntrol is	0 to 1000 (0.1 1/s)	15
3381 (PR)	SP181	VCGS	Target value of variable speed loop proportional gain at spindle synchroniza-ti on	prop (VG	oortio SP)	onal at th	gain ne ma	with r ximu	espeo m spe	ed loo ct to S eed de chroni	P178 fined	in	0 to 100 (%)	100

No.		Iter	ns	Details	Setting range	Standard setting
3382 (PR)	SP182	VCSS	Change starting speed of variable speed loop proportional gain at spindle synchroniza-ti on	Set the speed for starting change of speed loop proportional gain at spindle synchronization. SP178 SP178x (SP181/100) SP182 SP017	0 to 32767 (r/min)	0
3383	SP183	SYNV	Sync match- ing speed at spindle syn- chronization	For changeover from the speed loop to the position loop at spindle synchronization, set a speed command error range for output of the sync speed matching signal.	0 to 1000 (r/min)	20
3384 (PR)	SP184	FFCS	Acceleration rate feed forward gain at spindle synchronizati on	Set the acceleration rate feed forward gain at spindle synchronization. This parameter is used only with the SPJ2.	0 to 1000 (%)	0
3385	SP185	SINP	Spindle sync in-position width	Set the position error range for output of the in-position signal at spindle synchronization.	1 to 2880 (1/16°)	16
3386 (PR)	SP186	SODR	Excessive error width at spindle synchronizati on	Set the excessive error width at spindle synchronization.	1 to 32767 (1/4 pulse) (1 pulse =0.088°)	32767
3387 (PR)	SP187	IQGS	Current loop gain magnifi- cation1 at spindle syn- chronization	Set the magnification of current loop gain (torque component) at spindle synchronization.	1 to 1000 (%)	100
3388 (PR)	SP188	IDGS	Current loop gain magnifi- cation 2 at spindle syn- chronization	Set the magnification of current loop gain (excitation component) at spindle synchronization.	1 to 1000 (%)	100
3389 to 3392	SP189 to SP192			Not used. Set to "0".	0	0

No.		lte	ems				Setting range	Standard setting					
3393 (PR)	SP193	SPECT	Synchronous tapping specifications		t the s units.	synchron	ous ta	appir	ng spe	ecifica	itions in	FFFF HEX	0000
						E D	С	В	A	9	8	setting	
				Z	rtn p	typ od8x							
					7	6 5	4	3	2	1	0	1	
						fdir	cdir	pyf			fclx		
				-		Always set						1	
				bit 0	Name fclx	Meaning w Closed loop		t to 0		ng whe closed lo	n set to 1		
				1									
				3	pyfx	Normal exc	itation		Positio fixed (s		excitation		
				4	cdir	Command		(+)	Comm	and pol			
				5	fdir	Position der polarity (+)	tector		polarity	n detec / (–)	tor		
				6 7									
				8 9									
				А									
				B C									
				D	od8x	Magnification excessive en 8 times inve	rror wic alid		excess 8 times	s valid	r width ×		
				E	ptyp	Position con type: After z return	zero poi		type: A stop	fter dec	ol switch eleration		
				F	zrtn	Zero point r direction: C				oint retu on: CW	Irn		
3394 (PR)	SP194	VGTP	Synchronous tapping speed loop gain propor- tional term	syr		speed loc nous tapp				gain i	n	0 to 1000 (1/s)	63
3395	SP195	VGTI	Synchronous			speed loc				in		0 to1000	60
(PR)			tapping speed loop gain integral term	-	nchroi	nous tapp	oing n	node) .			(0.1 1/s)	
3396	SP196	VGTD	Synchronous	Se	t the s	speed loc	p del	ay a	dvano	ce gai	n in	0 to1000	15
(PR)			tapping speed loop gain delay advance term	Ŵł		nous tapp is parame d.				', PI c	ontrol is	(0.1 1/s)	
3397	SP197			No	t used	d. Set to '	0".					0	0
3398 (PR)	SP198	VCGT	Target value of variable speed loop proportional gain at synchronous tapping	pro (V0	portic GTP)	magnifica onal gain at the ma 7 (TSP) a	with I Iximu	resp m m	ect to otor s	SP19 peed	defined	0 to 100 (%)	100

No.		lt	ems	Details	Setting range	Standard setting
3399 (PR)	SP199	VCST	Change starting speed of variable speed loop proportional gain at synchronous tapping	Set the speed for starting change of speed loop proportional gain at synchronous tapping. SP194 SP194× (SP198/100) SP199 SP017	0 to 32767 (r/min)	0
3400 (PR)	SP200	FFC1	Synchronous tapping acceleration feed forward gain (gear 1)	Set the acceleration feed-forward gain for selection of gear 000 at synchronous tapping.	0 to 1000 (%)	0
3401 (PR)	SP201	FFC2	Synchronous tapping acceleration feed forward gain (gear 2)	Set the acceleration feed-forward gain for selection of gear 001 at synchronous tapping.	0 to 1000 (%)	0
3402 (PR)	SP202	FFC3	Synchronous tapping acceleration feed forward gain (gear 3)	Set the acceleration feed-forward gain for selection of gear 010 at synchronous tapping.	0 to 1000 (%)	0
3403 (PR)	SP203	FFC4	Synchronous tapping acceleration feed forward gain (gear 4)	Set the acceleration feed-forward gain for selection of gear 011 at synchronous tapping.	0 to 1000 (%)	0
3404 to 3413	SP204 to SP213			Not used. Set to "0".	0	0
3414	SP214	TZRN	Synchronous tapping zero point return speed	This parameter is valid when SP193 (SPECT) bitE is set to "0". Set the zero point return speed used when the speed loop changes to the position loop.	0 to 500 (r/min)	50
3415	SP215	TPDT	tapping zero point return	This parameter is valid when SP193 (SPECT) bitE is set to "0". Set the deceleration rate where the machine starts to decelerate when it returns to the target stop point during synchronous tapping zero point return. When the machine tends to overshoot at the stop point set a smaller value.	1 to 10000 (pulse)	1
3416	SP216	TPST	Synchronous tapping zero point return shift amount	This parameter is valid when SP193 (SPECT) bitE is set to "0". Set the synchronous tapping zero point position.	0 to 4095	0

No.		Iter	ns	Details	Setting range	Standard setting
3417	SP217	TINP	Synchronous tapping in-position width	Set the position error range in which in-position signal is output during synchronize tapping.	1 to 2880 (1/16°)	16
3418 (PR)	SP218	TODR	Excessive error width at synchronous tapping	Set the excessive error width at synchronous tapping.	1 to 32767 (pulse) (1 pulse =0.088°)	32767
3419 (PR)	SP219	IQGT	Current loop gain magnifi- cation 1 at synchronous tapping	Set the magnification of current loop gain (torque component) during synchronous tapping.	1 to 1000 (%)	100
3420 (PR)	SP220	IDGT	Current loop gain magnifi- cation 2 at synchronous tapping	Set the magnification of current loop gain (excitation component) during synchronous tapping.	1 to 1000 (%)	100
3421 to 3424	SP221 to SP224			Not used. Set to "0".	0	0
3425	SP225	ОХКРН	Fixed control constant	Set by Mitsubishi. Set "0" unless designated in particular.	0	0
3426	SP226	OXKPL				
3427	SP227	OXVKP				
3428	SP228	ΟΧνκι				
3429	SP229	OXSFT				
3430	SP230					
3431	SP231					
3432	SP232					
3433 (PR)	SP233	JL	Disturbance observer general inertia scale	Set the ratio of the motor inertia + load inertia and motor inertia. $\frac{\text{Setting}}{\text{value}} = \frac{\text{Motor inertia + load inertia}}{\text{Motor inertia}}$ $\times 100$	0 to 5000 (%)	0
				(Normally, set "100" or more. When less than "50" is set, the setting will be invalid.)		

No.		Items		Details	Setting range	Standard setting
3434 (PR)	SP234	OBS1	Disturbanc e observer low path filter frequency	Set the frequency of the low path filter for when the disturbance observer is valid. Setting (1/s) = $2\pi f$ f: Approx. 1.5 times the disturbance frequency	0 to 1000 (1/s)	0
3435 (PR)	SP235	OBS2	Disturbanc e observer gain	Set the gain for the disturbance observer.	0 to 500 (%)	0
3436 to 3452	SP236 to SP252			Not used. Set to "0".	0	0
3453	SP253	DA1NO	D/A output channel 1 data number	Set the output data number for channel 1 of the D/A output function. When the setting value is "0", the output is speedometer. Refer to "8.5.1 D/A OUTPUT SPESIFICATIONS".	-32768 to 32767	0
3454	SP254	DA2NO	D/A output channel 2 data number	Set the output data number for channel 2 of the D/A output function. When the setting value is "0", the output is load meter. Refer to "8.5.1 D/A OUTPUT SPESIFICATIONS ".	-32768 to 32767	0
3455	SP255	DA1MPY	DA output channel 1 magnifica- tion	Set the data magnification for channel 1 of the D/A output function. The output magnification is (setting value)/256. When set to "0", the output magnification becomes 1-fold, in the same manner as when "256" is set. Refer to "8.5.1 D/A OUTPUT SPESIFICATIONS ".	-32768 to 32767 (1/256-fold)	0
3456	SP256	DA2MPY	DA output channel 2 magnifica- tion	Set the data magnification for channel 2 of the D/A output function. The output magnification is (setting value)/256. When set to "0", the output magnification becomes 1-fold, in the same manner as when "256" is set. Refer to "8.5.1 D/A OUTPUT SPESIFICATIONS ".	-32768 to 32767 (1/256-fold)	0

No.		Items		Details	Setting range	Standard setting
3457 (PR) to 3520 (PR)	SP257 to SP320		Motor constant (H coil)	 This parameter is valid only in the following two conditional cases: (a) In case that SP034 (SFNC2) bit0=1 and SP034 (SFNC2) bit2=0 Set the motor constants when using a special motor, not described in the SP040 (MTYP) explanation and when not using the coil changeover motor. (b) In case that SP034 (SFNC2) bit2=1 and SP034 (SFNC2) bit2=1 Set the motor constant of the H coil of the coil changeover motor. (Note) It is not allowed for the user to change the setting. 	0000 to FFFF HEX setting	0000
3521 (PR) to 3584 (PR)	SP321 to SP384		Motor constant (L coil)	 This parameter is valid only in the following conditional case: (a) In case that SP034 (SFNC2) bit0=1 and SP034 (SFNC2) bit2=1 Set the motor constant of the L coil of the coil changeover motor. (Note) It is not allowed for the user to change the setting. 	0000 to FFFF HEX setting	0000

8.3 MDS-B-SP/SPH, MDS-C1-SP/SPH

The spindle parameter setting and display method will differ according to the NC being used, so refer to Instruction Manual for each NC and the following spindles.

MELDAS AC Servo and Spindle MDS-A Series MDS-B Series Specifications Manual .BNP-B3759 MELDAS AC Servo and Spindle MDS-C1 Series Specifications ManualBNP-C3000

For parameters marked with a (PR) in the tables, turn the NC power OFF after setting. The parameters will be valid after the power is turned ON again.

The "fixed control constants" and "fixed control bits" in this section are set by Mitsubishi.

Í ∕ CAUTION

/! Do not make remarkable adjustments or changes of the parameters as the operation may become unstable.

/! In the explanation on bits, set all bits not used, including blank bits, to "0".

No.		lter	ns	Details	Setting range	Standard setting
3201	SP001	PGM	Magnetic sensor and motor built-in encoder orientation position loop gain	As the set value is larger, the orientation time becomes shorter and servo rigidity is increased. However, vibration is increased and the machine becomes likely to overshoot.	0 to 1000 (0.1 1/s)	100
3202	SP002	PGE	Encoder orientation position loop gain	As the set value is larger, the orientation time becomes shorter and servo rigidity is increased. However, vibration is increased and the machine becomes likely to overshoot.	0 to 1000 (0.1 1/s)	100
3203			non-cutting position	Set the position loop gain in C-axis non-cutting mode. During non-cutting (rapid traverse, etc.) with the C axis control, this position loop gain setting is valid.	1 to 100 (1/s)	15
3204	SP004	OINP	Orientation in-position width	Set the position error range in which an orientation completion signal is output.	1 to 2880 (1/16°)	16
3205 (PR)	SP005	OSP	Orientation mode changing speed limit value	Set the motor speed limit value to be used when the speed loop is changed to the position loop in orientation mode. When this parameter is set to "0", SP017 (TSP) becomes the limit value.	0 to 32767 (r/min)	0
3206	SP006	CSP	Orientation mode deceleration rate	As the set value is larger, the orientation time becomes shorter. However, the machine becomes likely to overshoot.	1 to 1000	20

No.		Items	6	Details	Setting range	Standard setting
3207	SP007	OPST	In-position shift amount for orientation	Set the stop position for orientation. (i)Motor built-in encoder, encoder: Set the value by dividing 360° by 4096. (ii)Magnetic sensor: Divide –5° to +5° by 1024 and put 0° for 0.	(i) 0 to 4095 (ii) –512 to 512	0
3208	SP008			Not used. Set to "0".	0	0
3209	SP009	PGT	Synchroni- zed tapping Position loop gain	Set the spindle position loop gain in synchronized tapping mode.	1 to 100 (1/s)	15
3210	SP010	PGS	Spindle synchro- nous position loop gain	Set the spindle position loop gain in spindle synchronization mode.	1 to 100 (1/s)	15
3211 to 3216	SP011 to SP016			Use not possible.	0	0
3217 (PR)	SP017	TSP	Maximum motor speed	Set the maximum motor speed of the spindle.	1 to 32767 (r/min)	6000
3218 (PR)	SP018	ZSP	Motor zero speed	Set the motor speed for which zero-speed output is performed.	1 to 1000 (r/min)	50
3219 (PR)	SP019	CSN1	Speed cushion 1	Set the time constant for a speed command from "0" to the maximum speed. (This parameter is invalid in position loop mode.)	1 to 32767 (10ms)	30
3220 (PR)	SP020	SDTS	Speed detection set value	Set the motor speed so for which speed detection output is performed. Usually, the setting value is 10% of SP017 (TSP).	0 to 32767 (r/min)	600
3221	SP021	TLM1	Torque limit 1	Set the torque limit rate for torque limit signal 001.	0 to 120 (%)	10
3222 (PR)	SP022	VGNP1	Speed loop gain propor- tional term under speed control	Set the speed loop proportional gain in speed control mode. When the gain is increased, response is improved but vibration and sound become larger.	0 to 1000 (1/s)	63
3223 (PR)	SP023	VGNI1	Speed loop gain integral term under speed control	Set the speed loop integral gain in speed control mode. Usually, set a value in proportion to SP022 (VGNP1).	0 to 1000 (0.1 1/s)	60

No.		Items	6	Details	Setting range	Standard setting
3224	SP024			Use not possible.	0	0
3225 (PR)	SP025	GRA1	Spindle gear teeth count 1	Set the number of gear teeth of the spindle corresponding to gear 000.	1 to 32767	1
3226 (PR)	SP026	GRA2	Spindle gear teeth count 2	Set the number of gear teeth of the spindle corresponding to gear 001.	1 to 32767	1
3227 (PR)	SP027	GRA3	Spindle gear teeth count 3	Set the number of gear teeth of the spindle corresponding to gear 010.	1 to 32767	1
3228 (PR)	SP028	GRA4	Spindle gear teeth count 4	Set the number of gear teeth of the spindle corresponding to gear 011.	1 to 32767	1
3229 (PR)	SP029	GRB1	Motor shaft gear teeth count 1	Set the number of gear teeth of the motor shaft corresponding to gear 000.	1 to 32767	1
3230 (PR)	SP030	GRB2	Motor shaft gear teeth count 2	Set the number of gear teeth of the motor shaft corresponding to gear 001.	1 to 32767	1
3231 (PR)	SP031	GRB3	Motor shaft gear teeth count 3	Set the number of gear teeth of the motor shaft corresponding to gear 010.	1 to 32767	1
3232 (PR)	SP032	GRB4	Motor shaft gear teeth count 4	Set the number of gear teeth of the motor shaft corresponding to gear 011.	1 to 32767	1

No.		Items	6			Details		Setting range	Standard setting
3233 (PR)	SP033	SFNC1	Spindle function 1	p formula bit 0 1 2 3 4 5 6 7 8 9 A B C D E F	F off h 7 yst py ote) A Name 1a2m dflt sftk fit sftk pychg pychg pycal ront hzs	Iways set "0" for the Meaning when set to 0 1 amplifier 2 motor function: Invalid Default motor: Main SF-TK card invalid This is used by Mitsubish Set to "0" unless particula (Conventional specifications) This is used by Mitsubish Set to "0" unless particula Normal ready ON This is used by Mitsubish Set to "0" unless particula	A 9 8 pycal pychg 2 1 0 sftk dflt 1a2m empty bits. Image: State of the set	0000 to FFFF HEX setting	0000

No.		Items	6				De	etails				Setting range	Standard setting
3234 (PR)	SP034	SFNC2	Spindle function 2	F 7 (Not 1 2 3 4 5 6 7 8 9 A B C D E F	E 6 e) Alv Mame mts1 invm mkch mkc2	vays se Meaning Special r invalid A genera motor FN Coil switt 2 invalid	C 4 t "0" fc g when motor cc al-purpo / control ch funct	B 3 mkc2 or the e set to 0 onstant se l invalid ion ification	A 2 mkch empty k Meanii Specia setting A gene motor f Coil sw 2 valid	9 1 invm pits. mg whee motor valid real-purp V contri- itch func- itch spe (Note1)	8 0 mts1 n set to 1 constant rol valid ction valid ecification (Note2)	0000 to FFFF HEX setting	000C
3235 (PR)	SP035	SFNC3	Spindle function 3	Set t	he sp E 6 te) Al	indle fu	4 et "0" f g when de-rang output ide-range output see slide	n 3 in B 3 Ibsc or the e invalid invalid invalid	bit uni A 2 I hbsc empty Meani H-coil t L-coil v constal H-coil t	ts. 9 1 l Iwic bits. ng whe nt outpu vide-ran nt outpu	n set to 1 nge it valid ge it valid de valid	0000 to FFFF HEX setting	0000

No.	Item	S	Details	Setting range	Standard setting
3236 (PR)	SP036 SFNC4	Spindle function 4	Set the spindle function 4 in bit units. F E D C B A 9 8 7 6 5 4 3 2 1 0 enc2 enc1 mag2 mag1 plg2 plg1 (Note) Always set "0" for the empty bits. bit Name Meaning when set to 0 Meaning when set to 0 Meaning when set to 1 0 plg1 PLG of motor 1 valid PLG of motor 2 invalid 1 plg2 PLG of motor 1 valid PLG of motor 1 invalid 2 mag1 MAG of motor 1 valid MAG of motor 2 invalid 3 mag2 MAG of motor 2 valid ENC of motor 1 invalid 4 enc1 ENC of motor 2 valid ENC of motor 2 invalid 5 enc2 ENC of motor 2 valid ENC of motor 2 invalid 6	0000 to FFFF HEX setting	0000
3237 (PR)	SP037 SFNC5	Spindle function 5	Set the spindle function 5 in bit units. F E D C B A 9 8 splg dplg noplg nsno nosg 7 6 5 4 3 2 1 0 0 1 1 plgo mago enco (Note) Always set "0" for the empty bits. bit Name Meaning when set to 0 Meaning when set to 1 0 enco Encoder orientation invalid Encoder orientation valid 1 mago Magnetic sensor orientation invalid PLG orientation valid 2 plgo PLG orientation invalid PLG orientation valid 3	0000 to FFFF HEX setting	0000

No.		Item	S			Details		Setting range	Standard setting
3238 (PR)	SP038	SFNC6	Spindle function 6		- <u>E</u>		A 9 8	0000 to FFFF HEX	0000
				vf	7 6 bs or	5 4 3	2 1 0 pftm alty	setting	
				·		-C1-SP/SPH	empty bits.		
				hit	Nomo	Maaning when act to 0	Maaning when set to 1		
				bit 0 1	Aame alty	Meaning when set to 0 Deceleration stop during special alarm invalid	Meaning when set to 1 Deceleration stop during special alarm valid		
				2	pftm	Encoder feedback serial communication invalid	Encoder feedback serial communication valid		
				3 4	plg2	Semi-closed pulse output signal x2 invalid	Semi-closed pulse output signal ×2 valid		
				5	adin	Interpolation during thread cutting invalid	Interpolation during thread cutting valid		
				6	orm vfbs	Orientation start memo invalid This is used by Mitsubish	Orientation start memo valid		
				7	sdt2	Set to "0" unless particula (Follows SFNC6-bitC	arly designated. Set output 2 to 2nd		
				8	pl80	setting) MHE90K detector's 180	speed detection output 180 wave PLG other		
				A	lmnp	wave PLG This is used by Mitsubish Set to "0" unless particula	i. i. arly designated.		
				в	dcsn	Dual cushion during acceleration/ deceleration valid	Dual cushion during acceleration/ deceleration invalid		
				C	XFzs	Set output 2 to MP scale low (L) speed mode	Set output 2 to zero speed output		
				E	iqsv Imx	This is used by Mitsubish Set to "0" unless particula			
				F	oplp	Open loop operation invalid	Open loop operation valid		
				Fo	MDS	-B-SP/SPH			
				bit	Name	Meaning when set to 0	Meaning when set to 1		
				0	alty	Deceleration stop during special alarm invalid	Deceleration stop during special alarm valid		
				1	pftm	Encoder feedback serial communication invalid	Encoder feedback serial communication valid		
				3	plg2	Semi-closed pulse output signal ×2 invalid	Semi-closed pulse output signal ×2 valid		
				4 5	tdn adin	Fixed control bit			
				6	orm	Orientation start memo invalid	Orientation start memo valid		
				7 8 9 A	vfbs sdt2 pl80 Imnp	Fixed control bit			
				B C D E	dcsn XFzs iqsv Imx	Fixed control bit			
				F	oplp	Open loop operation invalid	Open loop operation valid		

No.		Ite	ms		Details		Setting range	Standard setting
3239	SP039	ATYP	Amplifier	Set the amplifier ty			0000 to	0000
(PR)			type	Set each amplifier	type or "0"	_	FFFF	
				Parameter setting	Amplifier type		HEX	
				0000			setting	
				0001	SP-075			
				0002	SP-15			
				0003	SP-22			
				0004	SP-37	1		
				0005	SP-55	1		
				0006	SP-75	1		
				0007	SP-110			
				0008	SP-150			
				0009	SP-185	1		
				000A	SP-220	1		
				000B	SP-260	1		
				000C	SP-300			
				000D	SP (H)-370	1		
				000E	SP (H)-450	1		
				000F	SP-04	1		
				0010	SP-550	1		

No.		lter	ns		De	etails		Setting range	Standard setting
3240 (PR)	SP040	ΜΤΥΡ	Motor type	bit0 is set to	o "0". propriate mo	otor number	34 (SFNC2) from the	0000 to FFFF HEX setting	0000
				Parameter setting	Motor type	Maximum speed	Corre-spo nding amplifier		
				0000					
				0001	SJ-2.2A	10000 r/min	SP-22		
				0002	SJ-3.7A	10000 r/min	SP-37		
				0003	SJ-5.5A	8000 r/min	SP-55		
				0004	SJ-7.5A SJ-11A	8000 r/min 6000 r/min	SP-75 SP-110		
				0005	SJ-15A	6000 r/min	SP-110 SP-150		
				0007	SJ-18.5A	6000 r/min	SP-185		
				0008	SJ-22A	4500 r/min	SP-220		
				0009	SJ-26A	4500 r/min	SP-260		
				000A	SJ-30A	4500 r/min	SP-300		
				000B					
				000C					
				000D					
				000E 000F					
				000P		-			
				0010	SJ-N0.75A	10000 r/min	SP-075		
				0012	SJ-N1.5A	10000 r/min	SP-15		
				0013	SJ-N2.2A	10000 r/min	SP-22		
				0014	SJ-N3.7A	10000 r/min	SP-37		
				0015	SJ-N5.5A	8000 r/min	SP-55		
				0016	SJ-N7.5A	8000 r/min	SP-75		
				0017					
				0018					
				0019					
				001A					
				001B	SJ-J2.2A	10000 r/min	SP-22		
				001C	SJ-J3.7A	10000 r/min	SP-37		
				001D	SJ-J5.5A	8000 r/min	SP-55		
				001E	SJ-J7.5A	8000 r/min	SP-75		
				001F					

No.		ltem	s						Detai	ls					etting range	-	;	Standar setting
3241 (PR)	SP041	ΡΤΥΡ	Power supply type	Ρ	owe F		upply E am	D	С	В		9 yp	8	FFF HE	Х		0	000
					7	,	6	5	4	3		1	0	set	ting			
					bi	it l			ptyp	C	F	xplanati						
					0 1 2		conne	cted, se	tting be	elov	or of the d w is neces emergen	Irive unit ssary.	and the		-	ply a	are	
					3	t in	Set- ting	0x	1x		2x	3x	4x		5x	6x	7x	8x
					4	otyp	x0	Not used				CV-300						
					5 6		x1 x2		CV-1	10	CV-220							CR-10 CR-15
					7		x3											CR-22
								CV-37					01/15					CR-37
							x5 x6	CV-55	CV-15	50	CV-260		CV-45		V-550			CR-55
							x7				0. 200	CV-370						0.11 00
							x8 x9	CV-75	CV-18	~ -								CR-75 CR-90
					8 9		Se	t-	Reger	ner	sistor type ative res	istor	Res	sistaı	nce	С	ара	acity
					A B	typ	tin 0				del name / (Setting			value ver su		eger	nera	ation)
					В		1				260HMJ		26Ω				W	
							2		ZG300 R-RB3		30HMJ×2	2	26Ω 13Ω				000 000	
							4	M	R-RB5				13Ω			50	0V	/
							5				200HMJ×3 200HMJ×3		6.7Ω			. <u>.</u>	000 000	
							7		UNIT-1)	6.7Ω 30Ω				NO	
							8	2	UNIT-2				15Ω				0W	
							9 A to	D R-	UNIT-3				15Ω			21	00	N
							E	La	irge ca	pad	city + read			ed seo	quence	<u>.</u> >		
							F	R	eady O	Nł	nigh-spee	d sequer	ice					
					C D E F	ımp	Always	s set to '	"0".									
3242 (PR)	SP042	CRNG	C-axis detector range	d S	eteo Set "	ctor 0" fe	range or this	e. s parar	neter		et the C			0 to	o 7		0	

No.		Item	S	Details	Setting range	Standard setting
3243 (PR)	SP043	TRNG	Synchro- nous tapping, spindle synchro- nous detector range	This parameter is used to set the synchronous tapping or spindle synchronous detector range. Set "0" for this parameter.	0 to 7	0
3244 (PR)	SP044	TRANS	NC communi- cation frequency	Set a frequency of data communication with NC.	0 to 32767	Standard: 0 Special: 1028
3245	SP045	CSNT	Dual cushion timer	Set the cycle to add the increment values in the dual cushion process. When this setting value is increased, the dual cushion will increase, and the changes in the speed during acceleration/deceleration will become gradual.	0 to 1000 (ms)	0
3246 (PR)	SP046	CSN2	Speed command dual cushion	For an acceleration/deceleration time constant defined in SP019 (CSN1), this parameter is used to provide smooth movement only at the start of acceleration/deceleration. As the value of this parameter is smaller, it moves smoother but the acceleration/deceleration time becomes longer. To make this parameter invalid, set "0".	0 to 1000	0
3247 (PR)	SP047	SDTR	Speed detection reset value	Set the reset hysteresis width for a speed detection set value defined in SP020 (SDTS).	0 to 1000 (r/min)	30
3247 (PR)	SP047	SDTR	Speed detection reset value	Set the reset hysteresis width for a speed detection set value defined in SP020 (SDTS).	0 to 1000 (r/min)	30
3248 (PR)	SP048	SUT	Speed reach range	Set the speed deviation rate with respect to the commanded speed for output of the speed reach signal.	0 to 100 (%)	15
3249	SP049	TLM2	Torque limit 2	Set the torque limit rate for the torque limit signal 010.	1 to 120 (%)	20
3250	SP050	TLM3	Torque limit 3	Set the torque limit rate for the torque limit signal 011.	1 to 120 (%)	30
3251	SP051	TLM4	Torque limit 4	Set the torque limit rate for the torque limit signal 100.	1 to 120 (%)	40
3252	SP052	TLM5	Torque limit 5	Set the torque limit rate for the torque limit signal 101.	1 to 120 (%)	50
3253	SP053	TLM6	Torque limit 6	Set the torque limit rate for the torque limit signal 110.	1 to 120 (%)	60
3254	SP054	TLM7	Torque limit 7	Set the torque limit rate for the torque limit signal 111.	1 to 120 (%)	70

No.		lterr	IS	Details	Setting range	Standard setting
3255 (PR)	SP055	SETM	Excessive speed deviation timer	Set the timer value until the excessive speed deviation alarm is output. The value of this parameter should be longer than the acceleration/deceleration time.	0 to 60 (s)	12
3256	SP056	PYVR	Variable excitation (min value)	Set the minimum value of the variable excitation rate. Select a smaller value when gear noise is too high. However, a larger value is effective for impact response.	0 to 100 (%)	50
3257 (PR)	SP057	STOD	Constant → excessive judgment value	Set the value for judging when changing from a constant to excessive speed command.	0 to 50 (r/min)	0
3258 (PR)	SP058	SDT2	Fixed control constant	Set by Mitsubishi. Set "0" unless designated in particular.	0	0
3259 (PR)	SP059	МКТ	Winding changeover base shut-off timer	Set the base shut-off time for contactor switching at winding changeover. Note that the contactor may be damaged with burning if the value of this parameter is too small.	50 to 10000 (ms)	150
3260 (PR)	SP060	MKT2	Current limit timer after winding changeover	Set the current limit time to be taken after completion of contactor switching at winding changeover.	0 to 10000 (ms)	500
3261 (PR)	SP061	MKIL	Current limit value after winding changeover	Set the current limit value during a period defined in SP060 (MKT2) after completion of contactor switching at winding changeover.	0 to 120 (%)	75
3262	SP062			Not used. Set to "0".	0	0

No.		lter	ns		Detail	S		Setting range	Standard setting
3263 (PR)	SP063	OLT	Overload alarm detection time	Set the time co motor overload		r detectior	n of the	0 to 1000 (s)	60
3264 (PR)	SP064	OLL	Overload alarm detection level	Set the detecti alarm.	on level of	the moto	r overload	0 to 120 (%)	110
3265 (PR)	SP065	VCGN1	Target value of variable speed loop proportional gain	Set the magnif proportional ga (VGNP1) at the defined in SPC	ain with re e maximu	0 to 100 (%)	100		
3266 (PR)	SP066	VCSN1	Change starting speed of variable speed loop proportional gain	Set the speed when the speed loop proportional gain change starts.				0 to 32767 (r/min)	0
3267 (PR)	SP067	VIGWA	Change starting speed of variable current loop gain	Set the speed where the current loop gain change starts.				0 to 32767 (r/min)	0
3268 (PR)	SP068	VIGWB	Change ending speed of variable current loop gain	Set the speed change ends.	where the	e current l	oop gain	0 to 32767 (r/min)	0
3269 (PR)	SP069	VIGN	Target value of variable current loop gain	Set the magnification of current loop gain (torque component and excitation component) for a change ending speed defined in SP068 (VIGWB). When this parameter is set to "0", the magnification is 1. SP069x(1/16)-fold 1-fold SP067 SP068 SP017 SP07 SP068 SP017 SP07 SP068 SP017 SP07 SP068 SP017 SP069 (VIGWA) 0 to 6000 0 0 0 6001 to 8000 5000 8000 45 8001 or more 5000 10000 64				0 to 32767 (1/16-fold)	0
				8001 or more	5000	10000	64		

No.		Items	6	Details	Setting range	Standard setting			
3270	SP070	FHz	Machine resonance suppressio n filter frequency	When machine vibration occurs in speed and position control, set the frequency of the required vibration suppression. Note that a value of 100Hz or more is set. Set to "0" when not used.	0 to 3000 (Hz)	0			
3271 (PR)	SP071	VR2WA	Fixed control	Set by Mitsubishi. Set "0" unless designated in particular.	0	0			
3272 (PR)	SP072	VR2WB	constant						
3273 (PR)	SP073	VR2GN							
3274 (PR)	SP074	IGDEC							
3275	SP075	R2KWS		0 r2ch This is used by Mitsubishi. 1 no51 Set to "0" unless particularly designated. 2 r2dm 3 r2lm 4 r2am 5	eaning when se	it to 1			
				C					
3276	SP076	FONS	Machine resonance suppressio n filter operation speed	When the vibration increases in motor stop (ex. in orientation stop) when the machine vibration suppression filter is operated by SP070, operate the machine vibration suppression filter at a speed of this parameter or more. When set to "0", this is validated for all speeds.					
3277 (PR)	SP077	TDSL	Fixed control constant	Set by Mitsubishi. 14 Set "14" unless designated in particular.					
3278 (PR)	SP078		Fixed control	Set by Mitsubishi. Set "0" unless designated in particular.	0	0			
3279 (PR)	SP079	ILMT	constant						

No.		It	tems	Details	Setting range	Standard setting
3280	SP080			Use not possible.	0	0
3281	SP081	LMCA	Fixed control constant	This is used by Mitsubishi. Set to "0" unless particularly designated.	0	0
3282	SP082	LMCB				
3283	SP083					
3284 to 3286	SP084 to SP086			Use not possible.	0	0
3287 (PR)	SP087	DIQM	Target value of variable torque limit magnifica- tion at deceleration	Set the minimum value of variable torque limit at deceleration.	0 to 150 (%)	75
3288 (PR)	SP088	DIQN	Speed for starting change of variable torque limit magnifica- tion at deceleration	Set the speed where the torque limit value at deceleration starts to change.	0 to 32767 (r/min)	3000
3289	SP089			Use not possible.	0	0
3290	SP090			Use not possible.	0	0
3291	SP091	OFSN	Motor PLG forward rotation offset compensa- tion	Set the PLG offset value for the forward rotation. Normally set to "0".	–2048 to 2047 (–1mv)	0
3292	SP092	OFSI	Motor PLG reverse rotation offset compensa- tion	Set the PLG offset value for the reverse rotation. Normally set to "0".	–2048 to 2047 (–1mv)	0
3293 (PR)	SP093	ORE	Tolerable pulse check error	Set this when detecting the pulse detector's pulse mistakes. (Valid only for full close control.)	0 to 32767	0
3294 (PR)	SP094	LMAV	Load meter output filter	Set the filter time constant of load meter output. When "0" is set, a filter time constant is set to 100ms.	0 to 32767 (2ms)	0
3295 (PR)	SP095	VFAV	Fixed control constant	Set by Mitsubishi. Set "0" unless designated in particular.	0	0

No.		lter	ns			Details	S	Setting range	Standard setting
3296 (PR)	SP096	EGAR	Encoder gear ratio	an mo	d the	encoder end (exc uilt-in encoder) as Gear ratio Ser	n the spindle end ept for the indicated below. ting Gear ratio (acceleration)	-3 to 4	0
					0 1 2 3 4	1 : 1/2 -	-1 1:2 -2 1:4 -3 1:3		
3297 (PR)	SP097	SPECO	Orientation specifica- tion	l os		D C E ze ksft gchg 5 5 4 3	ips2 zdir	0000 to FFFF HEX setting	0000
						ways set "0" for the			
				bit 0		Meaning when set to Orientation rotation dire	0 Meaning when set to 1		
				1	odi1 odi2		ion in which the motor has r speed control)		
				2	dmin	Orientation in-position advance invalid	Orientation in-position advance valid		
				3	pyfx	Excitation min. (50%) during orientation serve lock invalid	Excitation min. (50%)		
				4	osc1	Indexing speed clamp invalid	Indexing speed clamp valid		
				5	fdir	Encoder detector polarity: +	Encoder detector polarity: -		
				6	mdir	Magnetic sensor polarity: +	Magnetic sensor polarity: –		
				7	vg8x	Speed gain *1/8 during torque limit valid	. ,		
				8		·	· ·		
				9	zdir	This is used by Mitsubi Set to "0" unless partic			
				AB	ips2	2nd in-position invalid	2nd in-position valid		
				С	gchg	Gain changeover during orientation invalid	g Gain changeover during orientation valid		
				D	ksft	Orientation virtual targe shift invalid	et Orientation virtual target shift valid		
				E	orze	This is used by Mitsubi Set to "0" unless partic			
					ostp				
						In-position a 0 (invalid)	dvance (bit 2) 1 (valid)		
				Second in-position	0 (Invalid)	In-position signal in OINP width=1 Control output 4/ bit 4=1 Second in-position signal=0 Control output 4/ bit F=1	In-position signal in OINP width=1 Control output 4/ bit 4=1 Second in-position signal=0 Control output 4/ bit F=0		
				Second	1 (Valid)		In-position signal in DINP width=1 Control output 4/ bit 4=1 Second in-position signal in OINP width = 0 Control output 4/ bit F=1		

No.		lten	าร	Details	Setting range	Standard setting
3298 (PR)	SP098	VGOP	Speed loop gain propor- tional term in orientation mode	Set the speed loop proportional gain in orientation mode. When the gain is increased, rigidity is improved in the orientation stop but vibration and sound become larger.	0 to 1000 (1/s)	63
3299 (PR)	SP099	VGOI	Orientation mode speed loop gain integral term	Set the speed loop integral gain in orientation mode.	0 to 1000 (0.1 1/s)	60
3300 (PR)	SP100	VGOD	Orientation mode speed loop gain delay advance term	Set a loop gain delay advance gain in orientation mode. When this parameter is set to "0", PI control is applied.	0 to 1000 (0.1 1/s)	15
3301 (PR)	SP101	DINP	Orientation advance in-position width	When using the orientation in-position advance function, set the in-position width that is larger than the normal in-position width defined in SP004 (OINP).	1 to 2880 (1/16°)	16
3302 (PR)	SP102	OODR	Excessive error value in orientation mode	Set the excessive error width in orientation mode.	0 to 32767 (1/4 pulse) (1 pulse= 0.088°)	32767
3303 (PR)	SP103	FTM	Index positioning completion OFF time timer	Set the time for forcedly turn OFF the index positioning completion signal (different from the orientation completion signal) after the leading edge of the indexing start signal.	0 to 10000 (ms)	200
3304 (PR)	SP104	TLOR	Torque limit value for orientation servo locking	Set the torque limit value for orientation in-position output. If the external torque limit signal is input, the torque limit value set by this parameter is made invalid.	0 to 120 (%)	100
3305 (PR)	SP105	IQG0	Current loop gain magnifica- tion 1 in orientation mode	Set the magnification for current loop gain (torque component) at orientation completion.	1 to 1000 (%)	100
3306 (PR)	SP106	IDG0	Current loop gain magnifica- tion 2 in orientation mode	Set the magnification for current loop gain (excitation component) at orientation completion.	1 to 1000 (%)	100
3307	SP107	CSP2	Deceleration rate 2 in orientation mode	Set the deceleration rate in orientation mode corresponding to the gear 001. When this parameter is set to "0", same as SP006 (CSP).	0 to 1000	0

No.		Item	าร	Details	Setting range	Standard setting
3308	SP108	CSP3 Decelerat rate 3 in orientation mode		Set the deceleration rate in orientation mode corresponding to the gear 010. When this parameter is set to "0", same as SP006 (CSP).	0 to 1000	0
3309	SP109	CSP4	Deceleration rate 4 in orientation mode	Set the deceleration rate in orientation mode corresponding to the gear 011. When this parameter is set to "0", same as SP006 (CSP).	0 to 1000	0
3310 to 3313	SP110 to SP113			Use not possible.		0
3314	SP114	OPER	Orientation pulse miss check value	An alarm "5C" will occur if the pulse miss value at the orientation stop exceeds this setting value. (Note that this is invalid when set to "0".) In this parameter, set the value to fulfill the following conditions. SP114 setting value > 1.5 × SP004 (orientation in-position width)	0 to 32767 (360°/4096)	0
3315	SP115	OSP2	Orientation motor speed clamp value 2	When the orientation clamp speed is changed by the control input, this parameter setting will be used instead of SP005: OSP. Indexing speed clamp valid This parameter is used when (SP097: SPEC0-bit4 = 1).	0 to 32767 (r/min)	0
3316	SP116	OPYVR	Minimum excitation value after changeover (2nd minimum excitation rate)	Minimum excitation rate when position control input or external input is selected.	0 to 100 (%)	0
3317	SP117	ORUT		This is used by Mitsubishi. Set to "0" unless particularly designated.	0	0
3318	SP118	ORCT	Number of orientation retry times	Set the number of times to retry when an orientation or feedback error occurs. The warning (A9) is issued while retrying orientation, and an alarm (5C) is issued when the set number of times is exceeded.	0 to 100 (time)	0
3319	SP119	MPGH	Orientation position gain H winding compensa- tion magnifi- cation	Set the compensation magnification of the orientation position loop gain for the H winding. H winding orientation position loop gain = SP001 (or SP002) × SP119/256 When set to "0", will become the same as SP001 or SP002.	0 to 2560 (1/256-fold)	0

No.		Item	S	Details	Setting range	Standard setting
3320	SP120	MPGL	Orientation position gain L winding compensa- tion magnifi- cation	Set the compensation magnification of the orientation position loop gain for the L winding. L winding orientation position loop gain = SP001 (or SP002) × SP120/256 When set to "0", will become the same as SP001 or SP002.	0 to 2560 (1/256-fold)	0
3321	SP121	MPCSH	Orientation deceleration rate H winding compensa- tion magnifi- cation	Set the compensation magnification of the orientation deceleration rate for the H winding. Orientation deceleration rate for the H winding = SP006 × SP121/256 When set to "0", will become the same as SP006.	0 to 2560 (1/256-fold)	0
3322	SP122	MPCSL	Orientation deceleration rate L winding compensa- tion magnifi- cation	Set the compensation magnification of the orientation deceleration rate for the L winding. Orientation deceleration rate for the L winding = SP006 × SP122/256 When set to "0", will become the same as SP006.	0 to 2560 (1/256-fold)	0
3323	SP123	MGD0	Magnetic sensor output peak value	This parameter is used for adjustment of orientation operation of the magnetic sensor. Set the output peak value of the magnetic sensor. If a gap between the sensor and the magnetizing element is small, increase the value of this parameter. If it is large, decrease the value of this parameter.	1 to 10000	Standard magnetizin g element: 542 Small magnetizin g element: 500
3324	SP124	MGD1	Magnetic sensor linear zone width	This parameter is used for adjustment of orientation operation of the magnetic sensor. Set the linear zone width of the magnetic sensor. If the radius of the mounted magnetizing element is large, decrease the value of this parameter. If it is small, increase the value of this parameter.	1 to 10000	Standard magnetizin g element: 768 Small magnetizin g element: 440

No.		Items	6		Detail	S	Setting range	Standard setting
3325	SP125	MGD2	Magnetic sensor switching point	orientati Set the or point at magneti Normally	ameter is used for on operation of the distance dimensior switching from pos c sensor output. y, set a value that i fined in SP124.	1 to 10000	Standard magnetizin g element: 384 Small magnetizin g element: 220	
3326 to 3328	SP126 to SP128			Use not	possible.		0	0
3329 (PR)	SP129	SPECC	C-axis specifica- tions	F I zrtn pt 7 0 vg8x	C-axis specification E D C B yp fb9x zrtd zrn: 6 5 4 3 fdir pho Jways set "0" for the Meaning when set to 0 Closed loop Interpolation A/D compensation invalid Position monitor during ready OFF invalid Normal (no compensation) Position detector polarity (+) Speed gain × 1/8 during torque limit valid Z-phase type: Normal start up Z-phase rising polarity (+) This is used by Mitsubist Set o "0" unless particula Speed feedback Standard (PLG) Position control switch type: After zero point return Zero point return direction: CCW	A 9 8 2 zdir ztyp 2 1 0 s rtrn adin fclx empty bits. mentry bits. Meaning when set to 1 Semi-closed loop (Gear 1 : 1 only) Interpolation A/D compensation valid Position monitor during ready OFF valid Vx4 synchronization compensation valid Position detector polarity (-) Position detector polarity (-) Speed gain x 1/8 during torque limit invalid Z-phase type: Start up only Z-phase rising polarity (-)		0000
3330	SP130	PGC1	First position loop gain for cutting on C-axis		position loop gain v I for C axis cutting.	1 to 100 (1/s)	15	
3331	SP131	PGC2	Second position loop gain for cutting on C-axis		position loop gain v ed for C axis cuttir	vhen the second gain lg.	1 to 100 (1/s)	15

No.		lten	ns	Details	Setting range	Standard setting
3332	SP132	PGC3	Third position loop gain for cutting on C-axis	Set the position loop gain when the third gain is selected for C-axis cutting.	1 to 100 (1/s)	15
3333	SP133	PGC4	Stop position loop gain for cutting on C-axis	Set the position loop gain for stopping when carrying out C-axis cutting.	1 to 100 (1/s)	15
3334 (PR)	SP134	VGCP0	C-axis non-cutting speed loop gain proportional item	Set the speed loop proportional gain in C-axis non-cutting mode.	0 to 5000 (1/s)	63
3335 (PR)	SP135	VGCI0	C-axis non-cutting speed loop gain integral item	Set the speed loop integral gain in C-axis non-cutting mode.	0 to 5000 (0.1 1/s)	60
3336 (PR)	SP136	VGCD0	C-axis non-cutting speed loop gain delay advance item	Set the speed loop delay advance gain in C-axis non-cutting mode. When this parameter is set to "0", PI control is exercised.	0 to 5000 (0.1 1/s)	15
3337 (PR)	SP137	VGCP1	First speed loop gain proportional item for C-axis cutting	Set the speed loop proportional gain when the first gain is selected for C-axis cutting.	0 to 5000 (1/s)	63
3338 (PR)	SP138	VGCI1	First speed loop gain integral item for cutting on C-axis	Set the speed loop integral gain when the first gain is selected for C-axis cutting.	0 to 5000 (0.1 1/s)	60
3339 (PR)	SP139	VGCD1	First speed loop gain delay advance item for cutting on C-axis	Set the speed loop delay advance gain when the first gain is selected for curing on the C-axis. When this parameter is set to "0", PI control is applied.	0 to 5000 (0.1 1/s)	15
3340 (PR)	SP140	VGCP2	Second speed loop gain proportional item for cutting on C-axis	Set the speed loop proportional gain when the second gain is selected for C-axis cutting.	0 to 5000 (1/s)	63

No.		ltem	IS	Details	Setting range	Standard setting
3341 (PR)	SP141	VGCI2	Second speed loop gain integral item for cutting on C-axis	Set the speed loop integral gain when the second gain is selected for C-axis cutting.	0 to 5000 (0.1 1/s)	60
3342 (PR)	SP142	VGCD2	Second speed loop gain delay advance item for cutting on C-axis	Set the speed loop delay advance gain when the second gain is selected for C-axis cutting. When this parameter is set to "0", PI control is applied.	0 to 5000 (0.1 1/s)	15
3343 (PR)	SP143	VGCP3	Third speed loop gain proportional item for cutting on C-axis	Set the speed loop proportional gain when the third gain is selected for C-axis cutting.	0 to 5000 (1/s)	63
3344 (PR)	SP144	VGCI3	Third speed loop gain integral item for cutting on C-axis	Set the speed loop integral gain when the third gain is selected for C-axis cutting.	0 to 5000 (0.1 1/s)	60
3345 (PR)	SP145	VGCD3	Third speed loop gain delay advance item for cutting on C-axis	Set the speed loop delay advance gain when the third gain is selected for C-axis cutting. When this parameter is set to "0", PI control is applied.	0 to 5000 (0.1 1/s)	15
3346 (PR)	SP146	VGCP4	Speed loop gain propor- tional item for stop of cutting on C-axis	Set the speed loop proportional gain when C-axis cutting is stopped.	0 to 5000 (1/s)	63
3347 (PR)	SP147	VGCI4	Speed loop gain integral item for stop of cutting on C-axis	Set the speed loop integral gain when C-axis cutting is stopped.	0 to 5000 (0.1 1/s)	60
3348 (PR)	SP148	VGCD4	Speed loop gain delay advance item for stop of cutting on C-axis	Set the speed loop delay advance gain when C-axis cutting is stopped. When this parameter is set to "0", PI control is applied.	0 to 5000 (0.1 1/s)	15

No.		Item	IS	Details	Setting range	Standard setting
3349	SP149	CZRN	C-axis zero point return speed	This parameter is valid when SP129 (SPECC) bitE is set to "0". Set the zero point return speed used when the speed loop changes to the position loop.	1 to 500 (r/min)	50
3350	SP150	CPDT	C-axis zero point return deceleration point	This parameter is valid when SP129 (SPECC) bitE is set to "0". Set the deceleration rate where the machine starts to decelerate when it returns to the target stop point during C-axis zero point return. When the machine tends to overshoot at the stop point, set the smaller value.	1 to 10000	1
3351	SP151	CPSTL	C-axis zero point return shift amount (low byte)	This parameter is valid when SPECC (SP129) bitE is set to "0". Set the C-axis zero point position.	HEX setting 00000000 to FFFFFFF	H: 0000 L: 0000
3352	SP152	CPSTH	C-axis zero point return shift amount (high byte)		(1/1000°)	
3354 (PR)	SP154	CODRL	Excessive error width on C-axis (low byte)	Set the excessive error width on the C-axis.	HEX setting 00000000 to FFFFFFF (1/1000°)	H: 0001 L: D4C0
3355 (PR)	SP155	CODRH	Excessive error width on C-axis (high byte)			
3356	SP156	OVSH	C-axis overshoot compensa- tion	Set this to prevent overshooting when shifting from movement to stopping with C-axis control. (Set this referring to the load meter display when overshooting occurred.)	0 to 1000 (0.1%)	0
3357 to 3358	SP157 to SP158			Not used. Set to "0".	0	0
3359	SP159	CPY0	C-axis non-cutting variable excitation ratio	Set the minimum value of variable excitation ratio for non-cutting on the C-axis .	0 to 100 (%)	50
3360	SP160	CPY1	C-axis cutting variable excitation ratio	Set the minimum variable excitation ratio for cutting on the C-axis.	0 to 100 (%)	100

No.		lter	ns	Details	Setting range	Standard setting
3361 (PR)	SP161	IQGC0	Current loop gain magnifi- cation 1 for non-cutting on C-axis	Set the magnification of current loop gain (torque component) for C-axis non-cutting.	1 to 1000 (%)	100
3362 (PR)	SP162	IDGC0	Current loop gain magnifi- cation 2 for non-cutting on C-axis	Set the magnification of current loop gain (excitation component) for C-axis non-cutting.	1 to 1000 (%)	100
3363 (PR)	SP163	IQGC1	Current loop gain magnifi- cation 1 for cutting on C-axis	Set the magnification of current loop gain (torque component) for C-axis cutting.	1 to 1000 (%)	100
3364 (PR)	SP164	IDGC1	Current loop gain magnifi- cation 2 for cutting on C-axis	Set the magnification of current loop gain (excitation component) for C-axis cutting.	1 to 1000 (%)	100
3365	SP165	PG2C	C-axis position loop gain 2	Set the second position loop gain when high-gain control is carried out for control of the C-axis. This parameter is applied to all the operation modes of C-axis control. When this function is not used, assign "0".	0 to 999 (1/s)	0
3366	SP166	PG3C	C-axis position loop gain 3	Set the third position loop gain when high-gain control is carried out for control of the C-axis. This parameter is applied to all the operation modes of C-axis control. When this function is not used, assign "0".	0 to 999 (1/s)	0
3367 (PR)	SP167	PGU	Position loop gain for increased spindle holding force	Set the position loop gain for when the disturbance observer is valid.	0 to 100 (1/s)	15
3368 (PR)	SP168	VGUP	Speed loop gain proportional item for increased spindle holding force	Set the speed loop gain proportional item for when the disturbance observer is valid.	0 to 5000 (1/s)	63
3369 (PR)	SP169	VGUI	Speed loop gain integral item for increased spindle holding force	Set the speed loop gain integral item for when the disturbance observer is valid.	0 to 5000 (0.1 1/s)	60

8. Spindle Parameters 8.3 MDS-B-SP/SPH, MDS-C1-SP/SPH

No.		lter	ns					Det	ails				Setting range	Standard setting
3370 (PR)	SP170	VGUD	Speed loop gain delay advance item for increased spindle holding force		Set the speed loop gain delay advance item for when the disturbance observer is valid.						0 to 5000 (0.1 1/s)	15		
3371 to 3376	SP171 to SP176			Not	Not used. Set to "0".						0	0		
3377 (PR)	SP177	SPECS	Spindle synchronous specifica- tions	bit u F 7 bit 1 0 1 2 3 4 5 6 7 8 9 A B C	nits.	E 6 Closs Inter comp Position (Norm Position (Ile syr D Ddx8 5 fdir ed loop polation pensatic tion mor y OFF in nal excit tion dete (positive mail excit tion dete (positive ad with S	A A A/D bn inval nitor du hvalid ation ector di e directi ation	B 3 pyfx it o 0 id ring rec- on)	A 2 rtrn Meaning Semi-clo Interpola compens Position fixed (strr Position of fixed (strr Position of tion (neg Magnifica excessive 8 times v	9 1 adin when s sed loop tion A/D tation va monitor va monitor va ito op exc ong detector ative dire	8 phos 0 fclx id during itation direc- ection)	0000 to FFFF HEX setting	0000
3378 (PR)	SP178	VGSP	Spindle synchronous speed loop gain propor- tional term		Set the speed loop proportional gain in spindle synchronous mode.						0 to 1000 (1/s)	63		
3379 (PR)	SP179	VGSI	Spindle synchronous speed loop gain integral term				d loop mode		gral	gain in	spind	le	0 to 1000 (0.1 1/s)	60

No.		lter	ns	Details	Setting range	Standard setting
3380 (PR)	SP180	VGSD	Spindle synchronous speed loop gain delay advance term	Set the speed loop delay advance gain in spindle synchronous mode. When this parameter is set to "0", PI control is applied.	0 to 1000 (0.1 1/s)	15
3381 (PR)	SP181	VCGS		Set the magnification of speed loop proportional gain with respect to SP178 (VGSP) at the maximum speed defined in SP017 (TSP) in spindle synchronous mode.	0 to 100 (%)	100
3382 (PR)	SP182	vcss	Spindle synchronous Change starting speed of variable speed loop proportional gain	Set the speed when the speed loop proportional gain change starts in the spindle synchronous mode. SP178 SP178× (SP181/100) SP182 SP017	0 to 32767 (r/min)	0
3383	SP183	SYNV	Spindle synchronous Sync match- ing speed	For changeover from the speed loop to the position loop in the spindle synchronous mode, set a speed command error range for output of the synchronous speed matching signal.	0 to 1000 (r/min)	20
3384 (PR)	SP184	FFCS	Spindle synchronous Acceleration rate feed forward gain	Set the acceleration rate feed forward gain in the spindle synchronous mode. This parameter is used only with the SPJ2.	0 to 1000 (%)	0
3385	SP185	SINP	Spindle synchronous In-position width	Set the position error range for output of the in-position signal in the spindle synchronous mode.	1 to 2880 (1/16°)	16
3386 (PR)	SP186	SODR	Spindle synchronous Excessive error width	Set the excessive error width in the spindle synchronous mode.	1 to 32767 (pulse) (1 pulse =0.088°)	32767
3387 (PR)	SP187	IQGS	Spindle synchronous Current loop gain magnifi- cation1	Set the magnification of current loop gain (torque component) in the spindle synchronous mode.	1 to 1000 (%)	100

No.		lte	ms	Details Setting range	Standard setting
3388 (PR)	SP188	IDGS	Spindle synchronous Current loop gain magnifi- cation 2	Set the magnification of current loop gain (excitation component) in the spindle synchronous mode.	100
3389	SP189	PG2S	Spindle synchronous Position loop gain 2	Set the second position loop gain when high-gain control is carried out in the spindle synchronous mode. When this parameter function is not used, set to "0".	0
3390	SP190	PG3S	Spindle synchronous Position loop gain 3	Set the third position loop gain when high-gain control is carried out in the spindle synchronous mode.0 to 999 (1/s)When this parameter function is not used, set to "0".	0
3391	SP191			Use not possible. 0	0
3392	SP192			Not used. Set to "0".	
3393 (PR)	SP193	SPECT	Synchronized tapping specifications	Set the synchronized tapping specifications in bit units. 0000 to FFFF F E D C B A 9 8 Image: Imag	0000
				E ptyp Position control switch type: After zero point return stop	
				F Zrtn Zero point return direction: CCW Zero point return direction: CW	

No.			Items	Details	Setting range	Standard setting
3394 (PR)	SP194	VGTP	Synchronized tapping speed loop gain proportional term	Set the speed loop proportional gain in synchronized tapping mode.	0 to 1000 (1/s)	63
3395 (PR)	SP195	VGTI	Synchronized tapping speed loop gain integral term	Set the speed loop integral gain in synchronized tapping mode.	0 to1000 (0.1 1/s)	60
3396 (PR)	SP196	VGTD	Synchronized tapping speed loop gain delay advance term	Set the speed loop delay advance gain in synchronized tapping mode. When this parameter is set to "0", PI control is applied.	0 to 1000 (0.1 1/s)	15
3397	SP197			This is used by Mitsubishi. Set to "0" unless particularly designated.	0	0
3398 (PR)	SP198	VCGT	Synchronized tapping target value of variable speed loop proportional gain	Set the magnification of speed loop proportional gain with respect to SP194 (VGTP) at the maximum motor speed defined in SP017 (TSP) in synchronized tapping mode.	0 to 100 (%)	100
3399 (PR)	SP199	VCST	Synchronized tapping change starting speed of variable speed loop proportional gain	Set the speed where the speed loop proportional gain change starts during synchronized tapping. SP194 SP194 SP194 SP194 SP198/100) Speed SP199 SP017	0 to 32767 (r/min)	0
3400 (PR)	SP200	FFC1	Synchronized tapping acceleration feed forward gain (gear 1)	Set the acceleration feed forward gain for selection of gear 000 during synchronized tapping. This parameter should be used when an error of relative position to Z-axis servo is large.	0 to 1000 (%)	0
3401 (PR)	SP201	FFC2	Synchronized tapping acceleration feed forward gain (gear 2)	Set the acceleration feed forward gain for selection of gear 001 during synchronized tapping.	0 to 1000 (%)	0
3402 (PR)	SP202	FFC3	Synchronized tapping acceleration feed forward gain (gear 3)	Set the acceleration feed forward gain for selection of gear 010 during synchronized tapping.	0 to 1000 (%)	0

No.		lte	ms	Details	Setting range	Standard setting
3403 (PR)	SP203	FFC4	Synchronized tapping acceleration feed forward gain (gear 4)	Set the acceleration feed forward gain for selection of gear 011 during synchronized tapping.	0 to 1000 (%)	0
3404 to 3413	SP204 to SP213			Not used. Set to "0".	0	0
3414	SP214	TZRN	Synchronized tapping zero point return speed	This parameter is valid when SP193 (SPECT) bitE is set to "0". Set the zero point return speed used when the speed loop changes to the position loop.	0 to 500 (r/min)	50
3415	SP215	TPDT	Synchronized tapping zero point return deceleration rate	This parameter is valid when SP193 (SPECT) bitE is set to "0". Set the deceleration rate where the machine starts to decelerate when it returns to the target stop point during synchronized tapping zero point return. When the machine tends to overshoot at the stop point set a smaller value.	0 to 10000 (pulse)	1
3416	SP216	TPST	Synchronized tapping zero point return shift amount	This parameter is valid when SP193 (SPECT) bitE is set to "0". Set the synchronized tapping zero point position.	0 to 4095	0
3417	SP217	TINP	Synchronized tapping in-position width	Set the position error range for output of the in-position during synchronized tapping.	1 to 2880 (1/16°)	16
3418 (PR)	SP218	TODR	Synchronized tapping excessive error width	Set the excessive error width during synchronized tapping.	1 to 32767 (pulse) (1 pulse =0.088°)	32767
3419 (PR)	SP219	IQGT	Synchronized tapping current loop gain magnifi- cation 1	Set the magnification of current loop gain (torque component) during synchronized tapping.	1 to 1000 (%)	100
3420 (PR)	SP220	IDGT	Synchronized tapping current loop gain magnifi- cation 2	Set the magnification of current loop gain (excitation component) during synchronized tapping.	1 to 1000 (%)	100

No.		lter	ns	Details	Setting range	Standard setting
3421	SP221	PG2T	Synchronized tapping position loop gain 2	Set the second position loop gain when high-gain control is applied during synchronized tapping. When this parameter is not used, set to "0".	0 to 999 (1/s)	0
3422	SP222	PG3T	Synchronized tapping position loop gain 3	Set the third position loop gain when high-gain control is applied during synchronized tapping. When this parameter is not used, set to "0".	0 to 999 (1/s)	0
3423	SP223	SPDV	Speed monitor speed	Set the spindle limit speed in the door open state. (Invalid when 0 is set.) If the spindle end speed exceeds this setting value when the door is open, the speed monitor error (5E) will occur.	0 to 800 (r/min)	0
3424	SP224	SPDF	Speed monitor time	Set the time (continuous) to detect alarms. (Detected instantly when 0 is set.)	0 to 2813 (3.5ms)	0
3425	SP225	ОХКРН	Position loop gain magni- fication after orientation gain changeover (H coil)	If gain changeover is valid (SP097: SPEC0-bitC=1) during orientation, set the magnification of each gain changed to after in-position.	0 to 2560 (1/256-fold)	0
3426	SP226	OXKPL	Position loop gain magni- fication after orientation gain changeover (L coil)		0 to 2560 (1/256-fold)	0
3427	SP227	OXVKP	Speed loop proportional gain magnifi- cation after orientation gain changeover		0 to 2560 (1/256-fold)	0
3428	SP228	ΟΧVΚΙ	Speed loop cumulative gain magnifi- cation after orientation gain changeover	If gain changeover is valid (SP097: SPEC0-bitC=1) during orientation, set the magnification of each gain changed to after in-position.	0 to 2560 (1/256-fold)	0
3429	SP229	OXSFT	Orientation virtual target shift amount	Set the amount to shift the target position when orientation virtual target position is valid (SP097: SPEC0-bitD=1).	0 to 2048 (360°/4096)	0
3430 to	SP230 to SP232			Use not possible.		

No.		lte	ems	Details	Setting range	Standard setting
3433 (PR)	SP233	JL	Disturbance observer general inertia scale	Set the ratio of the motor inertia + load inertia and motor inertia. Setting value = $\frac{\text{Motor inertia + load inertia}}{\text{Motor inertia}} \times 100$ (Normally, set "100" or more. When less than "50" is set, the setting will be invalid.)	0 to 5000 (%)	0
3434 (PR)	SP234	OBS1	Disturbance observer low path filter frequency	Set the frequency of the low path filter for when the disturbance observer is valid. Setting $(1/s) = 2\pi f$ f: Approx. 1.5 times the disturbance frequency	0 to 1000 (1/s)	0
3435 (PR)	SP235	OBS2	Disturbance observer gain	Set the gain for the disturbance observer.	0 to 500 (%)	0
3436	SP236	OBS3		This is used by Mitsubishi. Set to "0" unless particularly designated.	0	0
3437	SP237			Not used. Set to "0".	0	0
3438 to 3441	SP238 to SP241			Use not possible.	0	0
3442	SP242	Vavx		This is used by Mitsubishi. Set to "0" unless particularly designated.	0	0
3443	SP243	UTTM			0	0
3444	SP244	OPLP			0	0
3445	SP245	PGHS			0	0
3446	SP246	TEST			0	0
3447 to 3448	SP247 to SP248			Use not possible.	0	0
3449	SP249	SM0	Speed meter speed	Set the motor rotation speed when the speed meter 10V is output. When set to "0", this parameter becomes the same as SP017 (TSP).	0 to 32767 (r/min)	0
3450	SP250	LM0	Load meter voltage	Set the voltage when the load meter 120% is output. When set to "0", this becomes 10V.	0 to 10 (V)	0
3451 to 3452	SP251 to SP252			Use not possible.	0	0

No.		Items	;	Details	Setting range	Standard setting
3453	SP253	DA1NO	D/A output channel 1 data number	Set the output data number for channel 1 of the D/A output function. When set to "0", the output is speedometer. Refer to "9.4 (1) For D/A output functions".	-32768 to 32767	0
3454	SP254	DA2NO	D/A output channel 2 data number	Set the output data number for channel 2 of the D/A output function. When set to "0", the output is load meter. Refer to "9.4 (1) For D/A output functions".	-32768 to 32767	0
3455	SP255	DA1MPY	DA output channel 1 magnifica- tion	Set the data magnification for channel 1 of the D/A output function. The output magnification is the setting value divided by 256. When set to "0", the output magnification becomes 1-fold, in the same manner as when "256" is set. Refer to "9.4 (1) For D/A output functions".	-32768 to 32767 (1/256-fold)	0
3456	SP256	DA2MPY	DA output channel 2 magnifica- tion	Set the data magnification for channel 2 of the D/A output function. The output magnification is the setting value divided by 256. When set to "0", the output magnification becomes 1-fold, in the same manner as when "256" is set. Refer to "9.4 (1) For D/A output functions".	-32768 to 32767 (1/256-fold)	0

8. Spindle Parameters 8.3 MDS-B-SP/SPH, MDS-C1-SP/SPH

No.		Items	;	Details	Setting range	Standard setting
3457 (PR) to 3520 (PR)	SP257 to SP320	RPM BSD	Motor constant (H coil)	 This parameter is valid only in the following two conditional cases: (a) In case that SP034 (SFNC2) bit0=1 and SP034 (SFNC2) bit2=0 Set the motor constants when using a special motor, not described in the SP040 (MTYP) explanation and when not using the coil changeover motor. (b) In case that SP034 (SFNC2) bit2=1 and SP034 (SFNC2) bit2=1 Set the motor constant of the H coil of the coil changeover motor. (Note) It is not allowed for the user to change the setting. 	0000 to FFFF HEX setting	0000
3521 (PR) to 3584 (PR)	SP321 to SP384	RPML BSDL	Motor constant (L coil)	 This parameter is valid only in the following conditional case: (a) In case that SP034 (SFNC2) bit0=1 and SP034 (SFNC2) bit2=1 Set the motor constant of the L coil of the coil changeover motor. (Note) It is not allowed for the user to change the setting. 	0000 to FFFF HEX setting	0000

8.4 MDS-C1-SPM

The spindle parameter setting and display method will differ according to the NC being used, so refer to Instruction Manual for each NC and the following spindles.

MELDAS AC Servo and Spindle MDS-C1 Series Specifications ManualBNP-C3000

For parameters marked with a (PR) in the tables, turn the NC power OFF after setting. The parameters will be valid after the power is turned ON again.

The "fixed control constants" and "fixed control bits" in this section are set by Mitsubishi.

- / Do not make remarkable adjustments or changes of the parameters as the operation may become unstable.
- /! In the explanation on bits, set all bits not used, including blank bits, to "0".

No.		I	tems	Details	Setting range	Standard setting
3201	SP001	PGM	Magnetic sensor and motor built-in encoder orientation position loop gain	As the set value is larger, the orientation time becomes shorter and servo rigidity is increased. However, vibration is increased and the machine becomes likely to overshoot.	0 to 2000 (0.1 1/s)	100
3202	SP002	PGE	Encoder orientation position loop gain	As the set value is larger, the orientation time becomes shorter and servo rigidity is increased. However, vibration is increased and the machine becomes likely to overshoot.	0 to 2000 (0.1 1/s)	100
3203	SP003	PGC0	C-axis non-cutting position loop gain	Set the position loop gain in C-axis non-cutting mode. During non-cutting (rapid traverse, etc.) with the C axis control, this position loop gain setting is valid.	1 to 200 (1/s)	15
3204	SP004	OINP	Orientation in-position width	Set the position error range in which an orientation completion signal is output.	1 to 2880 (1/16°)	16
3205 (PR)	SP005	OSP	Orientation mode changing speed limit value	Set the motor speed limit value to be used when the speed loop is changed to the position loop in orientation mode. When this parameter is set to "0", SP017 (TSP) becomes the limit value.	0 to 32767 (r/min)	0
3206	SP006	CSP	Orientation mode deceleration rate	As the set value is larger, the orientation time becomes shorter. However, the machine becomes likely to overshoot.	1 to 1000	20
3207	SP007	OPST	In-position shift amount for orientation	 Set the stop position for orientation. (i) Motor built-in encoder, encoder: Set the value by dividing 360° by 4096. (ii) Magnetic sensor: Divide -5° to +5° by 1024 and put 0° for 0. 	(i) 0 to 4095 (ii)–512 to 512	0
3208	SP008			Not used. Set to "0".	0	0

No.		lter	ns	Details	Setting range	Standard setting
3209	SP009	PGT	Synchronized tapping Position loop gain	Set the spindle position loop gain in synchronized tapping mode.	1 to 200 (1/s)	15
3210	SP010	PGS	Spindle synchronous position loop gain	Set the spindle position loop gain in spindle synchronization mode.	1 to 200 (1/s)	15
3211 to 3216	SP011 to SP016			Use not possible.	0	0
3217 (PR)	SP017	TSP	Maximum motor speed	Set the maximum motor speed of the spindle.	1 to 32767 (r/min)	6000
3218 (PR)	SP018	ZSP	Motor zero speed	Set the motor speed for which zero-speed output is performed.	1 to 1000 (r/min)	50
3219 (PR)	SP019	CSN1	Speed cushion 1	Set the time constant for a speed command from "0" to the maximum speed. (This parameter is invalid in position loop mode.)	1 to 32767 (10ms)	30
3220 (PR)	SP020	SDTS	Speed detection set value	Set the motor speed so for which speed detection output is performed. Usually, the setting value is 10% of SP017 (TSP).	0 to 32767 (r/min)	600
3221	SP021	TLM1	Torque limit 1	Set the torque limit rate for torque limit signal 001.	0 to 120 (%)	10
3222 (PR)	SP022	VGNP1	Speed loop gain proportional term under speed control	Set the speed loop proportional gain in speed control mode. When the gain is increased, response is improved but vibration and sound become larger.	0 to 1000 (1/s)	63
3223 (PR)	SP023	VGNI1	Speed loop gain integral term under speed control	Set the speed loop integral gain in speed control mode. Usually, set a value in proportion to SP022 (VGNP1).	0 to 1000 (0.1 1/s)	60
3224	SP024			Use not possible.	0	0
3225 (PR)	SP025	GRA1	Spindle gear teeth count 1	Set the number of gear teeth of the spindle corresponding to gear 000.	1 to 32767	1
3226 (PR)	SP026	GRA2	Spindle gear teeth count 2	Set the number of gear teeth of the spindle corresponding to gear 001.	1 to 32767	1
3227 (PR)	SP027	GRA3	Spindle gear teeth count 3	Set the number of gear teeth of the spindle corresponding to gear 010.	1 to 32767	1
3228 (PR)	SP028	GRA4	Spindle gear teeth count 4	Set the number of gear teeth of the spindle corresponding to gear 011.	1 to 32767	1
3229 (PR)	SP029	GRB1	Motor shaft gear teeth count 1	Set the number of gear teeth of the motor shaft corresponding to gear 000.	1 to 32767	1

No.		Items	6	Details Setting range	Standard setting
3230 (PR)	SP030	GRB2	Motor shaft gear teeth count 2	Set the number of gear teeth of the motor shaft 1 to 32767 corresponding to gear 001.	1
3231 (PR)	SP031	GRB3	Motor shaft gear teeth count 3	Set the number of gear teeth of the motor shaft 1 to 32767 corresponding to gear 010.	1
3232 (PR)	SP032	GRB4	Motor shaft gear teeth count 4	Set the number of gear teeth of the motor shaft 1 to 32767 corresponding to gear 011.	1
3233 (PR)	3F033	SFNC1	function 1	Set the spindle function 1 in bit units. 0000 to F E D C B A 9 8 poff ront pycal pychg pycal pychg FFFF HEX setting 7 6 5 4 3 2 1 0 pyst <ppotf< td=""> i i i i i setting (Note) Always set "0" for the empty bits. bit Name Meaning when set to 0 Meaning when set to 1 0 - - - - 1 - - - - 2 - - - - 3 - - - - 4 - - - - 5 - - - - 6 - - - - 7 - - - - 8 - - - - 9 - - - - A -</ppotf<>	0000

8. Spindle Parameters 8.4 MDS-C1-SPM

No.		Items	6				De	tails				Setting range	Standard setting
3234	SP034	SFNC2	Spindle	Set	the sp	indle fu	nctior	n 2 in	bit uni	ts.		0000 to	000C
(PR)			function 2	F	Ē		С	В	А	9	8	FFFF	
												HEX	
									1			setting	
				7	6	5	4	3	2	1	0		
								mkc2	2 mkch	Mk3c	mts1		
					-	ways set							
				bit	Name	Meaning					set to 1		
				0	mts1	Special m invalid			Special setting		onstant		
				1	Mk3c	3-step coi function ir	l chang nvalid	eover	3-step of function	oil chan valid	geover		
				2	mkch	Coil switc invalid	h functio	on	Coil swi	tch func	tion valid		
				3	mkc2	Coil switc 2 invalid	h specif	ication	Coil swi 2 valid (tch spec Note1) ((Note2)		
				4									
				5									
				6									
				8									
				9									
				Α									
				В									
				C D									
				E									
				F									
				(Not	e1) To	validate k	oit3(mk	c2). N	C side n	eeds to	prepare	,	
				•		vays turn	•	,.			• •		

8. Spindle Parameters 8.4 MDS-C1-SPM

No.		Items	6	Details								Setting range	Standard setting
3235 (PR)	SP035	SFNC3	Spindle function 3		/ 6		C 4 "O" for when se but chara inge inval put chara inge inval	B 3 the e at to 0 acter- id cter- id	A 2 mwid	9 1 Iwid ts. g when itput cha ange va ange va ange va	aracter- lid aracter- lid aracter-	0000 to FFFF HEX setting	0000

No.		Items					Det	ails				Setting range	Standard setting
3236	SP036			Not	used	. Set to "	0".						
3237 (PR)	SP037	SFNC5	Spindle function 5	(No bit 0 1 2 3 4 5 6 7 8 9 A B C D E F	F 7 te) Alv enco plgo nosg nsno te) Fc	pindle fu E D 6 5 Ways set " Meaning w Encoder or invalid PLG orient: No-signal c (Always mo No-signal c valid No-signal c valid	C 4 0" for t then set ientation ation invo ation invo betection phitoring) letection	B 3 he e to 0	A 2 plgo empty bit Meaning Encoder valid PLG orie PLG orie Monitorin position 1 orientatic No-signa invalid	9 nsno 1 s. when s orientation intation v g only in oop or n-mode I detecti	ion /alid n on	0000 to FFFF HEX setting	0000

8. Spindle Parameters 8.4 MDS-C1-SPM

Items	i	Details								Setting range	Standard setting
3 SFNC6	Spindle	Set th	ne spi	ndle fu	Inctior	6 in	bit uni	ts.		0000 to	0000
	function 6	F	Е	D	С	В	А	9	8	FFFF	
					XFzs			pl80	sdt2		
		7	6	5	4	З	2	1	0	setting	
					tdn			•	alty		
		0 1 2 3 4 5 6 7 8 9 4 8 9 4 8 9 8 8	alty pftm plg2 tdn orm hzrn sdt2 pl80	Decelera special al Encoder communi Semi-clo: output sig Fixed cor Orientatic invalid Fixed cor	tion stop larm inva feedback ication in sed puls gnal x2 ir ntrol bit on start r ntrol bit	during alid k serial valid e hvalid	Deceler special Encode commu Semi-cl output s	ration sto alarm v r feedba nication osed pu signal ×2	op during alid ack serial valid Ilse 2 valid		
E	8 SFNC6		function 6 F 7 hzm (Not bit 0 1 2 3 4 5 6 7 8 9 A B C D E	function 6 F F F F F F F F	function 6 F E D 7 6 5 hzrn orm (Note) Always set bit Name Meaning 0 alty Decelera special a 1 - 2 pftm Encoder 2 pftm Encoder 3 plg2 Semi-clo 4 tdn Fixed col 5 - - 6 orm Orientatic 7 hzrn Fixed col 8 sdt2 9 9 pl80 - A - - B - - C XFzs Fixed col D - -	function 6FEDC $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ 7654hzrnormtdn(Note) Always set "0" forbit Name Meaning when s0altyDeceleration stop0altyDeceleration stop12pftmEncoder feedback2pftmEncoder feedback3plg2Semi-closed pulssoutput signal x2 ir-4tdnFixed control bit5-6ormOrientation start r129pl80A-B-CXFzsFixed control bitD-E-	function 6 F E D C B 7 6 5 4 3 hzrn orm tdn plg2 (Note) Always set "0" for the element of the plg2 (Note) Always set "0" for the element of the plg2 (Note) Always set "0" for the element of the plg2 (Note) Always set "0" for the element of the plg2 (Note) Always set "0" for the element of the plg2 (Note) Always set "0" for the element of the plg2 (Note) Always set "0" for the element of the plg2 (Note) Always set "0" for the element of the plg2 (Note) Always set "0" for the element of the plg2 (Note) Always set "0" for the element of the plg2 (Note) Always set "0" for the element of the plg2 10 2 plg2 Semi-closed pulse output signal x2 invalid 4 4 6 Orientation start memo 1 1 9 <tr< td=""><td>F E D C B A 7 6 5 4 3 2 hzrn orm tdn plg2 pftm Kotel Always set "0" for the empty I Mame Meaning when set to 0 Meaning bit Name Meaning when set to 0 Meaning Deceleration stop during Deceleration stop during Deceleration stop during Deceleration invalid 1</td><td>function 6 F E D C B A 9 7 6 5 4 3 2 1 hzrn orm tdn plg2 pftm (Note) Always set "0" for the empty bits. bit Name Meaning when set to 0 Meaning when set to 0 Meaning when set to 0 0 alty Deceleration stop during Deceleration stop special alarm viaid special alarm viaid 1 Pftm Encoder feedback serial communication invalid Encoder feedback serial communication Semi-closed pulse 2 pftm Encoder feedback serial communication Semi-closed pulse Semi-closed pulse 3 plg2 Semi-closed pulse Semi-closed pulse Semi-closed pulse 4 tdn Fixed control bit Fixed control bit Fixed control bit 5 Image: set 2 9 pl80 Image: set 2 Fixed control bit 8 Image: set 2 9 pl80 Image: set 2 Image: set 2 Image: set 2 Image: se</td><td>function 6FEDCBA9876543210hzrnormtdnplg2pftmalty(Note) Always set "0" for the empty bits.bit Name Meaning when set to 0Meaning when set to 10altyDeceleration stop duringDeceleration stop during2pftmEncoder feedback serial communication invalid special alarm validSemi-closed pulse output signal x2 invalid3plg2Semi-closed pulse output signal x2 invalidSemi-closed pulse output signal x2 valid4tdnFixed control bitImage: Control bit invalid5Image: Control bit invalidImage: Control bit invalidImage: Control bit invalid6ormOrientation start memo invalidImage: Control bit invalidImage: Control bit invalid7hzmFixed control bit invalidImage: Control bit invalidImage: Control bit invalid8sdt2 9pl80Image: Control bit invalidImage: Control bit invalid8CXFzsFixed control bit invalidImage: Control bit invalid9pl80Image: Control bit invalidImage: Control bit invalid9pl80Image: Control bit invalidImage: Control bit invalid9pl80Image: Control bit invalidImage: Control bit invalid10Image: Control bit invalidImage: Control bit invalid11Image: Control bit invalidImage: Con</td><td>8 SFNC6 Spindle function 6 Set the spindle function 6 in bit units. 0000 to FFFF F E D C B A 9 8 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 1 pi80 sdt2 setting 1<!--</td--></td></tr<>	F E D C B A 7 6 5 4 3 2 hzrn orm tdn plg2 pftm Kotel Always set "0" for the empty I Mame Meaning when set to 0 Meaning bit Name Meaning when set to 0 Meaning Deceleration stop during Deceleration stop during Deceleration stop during Deceleration invalid 1	function 6 F E D C B A 9 7 6 5 4 3 2 1 hzrn orm tdn plg2 pftm (Note) Always set "0" for the empty bits. bit Name Meaning when set to 0 Meaning when set to 0 Meaning when set to 0 0 alty Deceleration stop during Deceleration stop special alarm viaid special alarm viaid 1 Pftm Encoder feedback serial communication invalid Encoder feedback serial communication Semi-closed pulse 2 pftm Encoder feedback serial communication Semi-closed pulse Semi-closed pulse 3 plg2 Semi-closed pulse Semi-closed pulse Semi-closed pulse 4 tdn Fixed control bit Fixed control bit Fixed control bit 5 Image: set 2 9 pl80 Image: set 2 Fixed control bit 8 Image: set 2 9 pl80 Image: set 2 Image: set 2 Image: set 2 Image: se	function 6FEDCBA9876543210hzrnormtdnplg2pftmalty(Note) Always set "0" for the empty bits.bit Name Meaning when set to 0Meaning when set to 10altyDeceleration stop duringDeceleration stop during2pftmEncoder feedback serial communication invalid special alarm validSemi-closed pulse output signal x2 invalid3plg2Semi-closed pulse output signal x2 invalidSemi-closed pulse output signal x2 valid4tdnFixed control bitImage: Control bit invalid5Image: Control bit invalidImage: Control bit invalidImage: Control bit invalid6ormOrientation start memo invalidImage: Control bit invalidImage: Control bit invalid7hzmFixed control bit invalidImage: Control bit invalidImage: Control bit invalid8sdt2 9pl80Image: Control bit invalidImage: Control bit invalid8CXFzsFixed control bit invalidImage: Control bit invalid9pl80Image: Control bit invalidImage: Control bit invalid9pl80Image: Control bit invalidImage: Control bit invalid9pl80Image: Control bit invalidImage: Control bit invalid10Image: Control bit invalidImage: Control bit invalid11Image: Control bit invalidImage: Con	8 SFNC6 Spindle function 6 Set the spindle function 6 in bit units. 0000 to FFFF F E D C B A 9 8 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 1 pi80 sdt2 setting 1 </td

No.	lte	ms		Details		Setting range	Standard setting
3239 (PR)	SP039 ATYP	Amplifier type	Set the amplifier ty Set each amplifier			0000 to FFFF	0000
			Parameter setting	Amplifier type		HEX	
			0000	-		setting	
			0001	_			
			0002	—			
			0003	—			
			0004	—			
			0005	—			
			0006	—			
			0007	SPM-110			
			0008	SPM-150			
			0009	SPM-185			
			000A	SPM-220			
			000B	SPM-260			
			000C	SPM-300			
			000D	(SPM-370) (SPM-450)			
			000E	(SFM-450) —			
			0010				
) and (SPM-450) are B-SPM.	used		
3240 (PR)	SP040 MTYP	Motor type	F E D	С В А 9	8	0000 to FFFF	0000
()						HEX setting	
			7 6 5	4 3 2 1	0	eetg	
				motr			
			bit Name	Details			
			0 motr Set the mo Set "0" whe 2 3 4 5 5 6 7 7 8 9 A 8 9 6 C 0 D 1 E 1 F 1	tor type. en using a special motor.			

No.		lte	ems					Det	ails				Setting range	\$	Standard setting	
3241 (PR)	SP041	PTYP	Power supply type		owe F	r suppl E am	D	e C	В		9 yp	8 F	0000 to FFF HEX	0	0000	
					7	6	5	4	3	2	1	0	setting			
						-	-	pt	ур							
				k 0 1 2	oit	connec	cted, se	etting	belov	or of the d v is neces	ssary.	and the	power suppadd 40h.	oly ai	re	
				3		Set- ting	0x	1	x	2x	3x	4x	5x	6x 7	'x 8x	
				4 5 6 7 8 9	rtyp	x0 x1 x2 x3 x4 x5 x6 x7 x8 x9	t- 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CV- CV- CV- Reg IDS-C ZG2(ZG3(R-RE	ener moc 1-C\ 00W2 00W1 330 350	ative res del name	istor when us	DS-A-C Res	R is used. iistance value rer supply re		N DW DW DW	
3242 (PR)	SP042	CRNG	C-axis detector range	F Th de	tect	Always	G R D D N L S Set to s set to tter is ge.	ZG30 -UNIT -UNIT o sett arge o eady "0".	00W2 T-1 T-2 T-3 ing capac ON r d to	00HMJ×3	y ON hig d sequen	6.7Ω 30Ω 15Ω 15Ω h-spee ce	d sequence	500 700 700 210		

No.		lte	ms	Details	Setting range	Standard setting
3243 (PR)	SP043	TRNG	Synchronous tapping, spindle synchronous detector range	This parameter is used to set the synchronous tapping or spindle synchronous detector range. Set "0" for this parameter.	0 to 7	0
3244 (PR)	SP044	TRAN S	NC communi- cation frequency	Set a frequency of data communication with NC.	0 to 32767	Standard: 0 Special: 1028
3245	SP045	CSNT	Dual cushion timer	Set the cycle to add the increment values in the dual cushion process. When this setting value is increased, the dual cushion will increase, and the changes in the speed during acceleration/deceleration will become gradual.	0 to 1000 (ms)	0
3246 (PR)	SP046	CSN2	Speed command dual cushion	For an acceleration/deceleration time constant defined in SP019 (CSN1), this parameter is used to provide smooth movement only at the start of acceleration/deceleration. As the value of this parameter is smaller, it moves smoother but the acceleration/deceleration time becomes longer. To make this parameter invalid, set "0".	0 to 1000	0
3247 (PR)	SP047	SDTR	Speed detection reset value	Set the reset hysteresis width for a speed detection set value defined in SP020 (SDTS).	0 to 1000 (r/min)	30
3248 (PR)	SP048	SUT	Speed reach range	Set the speed deviation rate with respect to the commanded speed for output of the speed reach signal.	0 to 100 (%)	15
3249	SP049	TLM2	Torque limit 2	Set the torque limit rate for the torque limit signal 010.	1 to 120 (%)	20
3250	SP050	TLM3	Torque limit 3	Set the torque limit rate for the torque limit signal 011.	1 to 120 (%)	30
3251	SP051	TLM4	Torque limit 4	Set the torque limit rate for the torque limit signal 100.	1 to 120 (%)	40
3252	SP052	TLM5	Torque limit 5	Set the torque limit rate for the torque limit signal 101.	1 to 120 (%)	50
3253	SP053	TLM6	Torque limit 6	Set the torque limit rate for the torque limit signal 110.	1 to 120 (%)	60
3254	SP054	TLM7	Torque limit 7	Set the torque limit rate for the torque limit signal 111.	1 to 120 (%)	70
3255 (PR)	SP055	SETM	Excessive speed deviation timer	Set the timer value until the excessive speed deviation alarm is output. The value of this parameter should be longer than the acceleration/deceleration time.	0 to 60 (s)	12

No.		lten	าร	Details	Setting range	Standard setting
3256	SP056			Use not possible.	0	0
3257 (PR)	SP057	STOD	Constant → excessive judgment value	Set the value for judging when changing from a constant to excessive speed command.	0 to 50 (r/min)	0
3258 (PR)	SP058	SDT2	2nd speed detection speed	Set the speed for turning the 2nd speed detection ON. (This is valid only when SP038: SFNC6-bit8 is set to "1".) If the speed drops below this set speed, the 2nd speed detection will turn ON. When the speed reaches this set speed +15r/min or more, the 2nd speed detection will turn OFF. If SP034: SFNC2-bit1 is set to "1", this will be the medium-speed and high-speed coil changeover speed. The speed detection reset width follows the SP047 (speed detection reset width) setting.	0 to 32767 (r/min)	0
3259 (PR)	SP059	МКТ	Winding changeover base shut-off timer	Set the base shut-off time for contactor switching at winding changeover. Note that the contactor may be damaged with burning if the value of this parameter is too small.	50 to 10000 (ms)	150
3260 (PR)	SP060	MKT2	Current limit timer after winding changeover	Set the current limit time to be taken after completion of contactor switching at winding changeover.	0 to 10000 (ms)	500
3261 (PR)	SP061	MKIL	Current limit value after winding changeover	Set the current limit value during a period defined in SP060 (MKT2) after completion of contactor switching at winding changeover.	0 to 120 (%)	75
3262	SP062			Not used. Set to "0".	0	0
3263 (PR)	SP063	OLT	Overload alarm detection time	Set the time constant for detection of the motor overload alarm.	0 to 1000 (s)	60
3264 (PR)	SP064	OLL	Overload alarm detection level	Set the detection level of the motor overload alarm.	0 to 180 (%)	110
3265 (PR)	SP065	VCGN1	Target value of variable speed loop proportional gain	Set the magnification of speed loop proportional gain with respect to SP022 (VGNP1) at the maximum motor speed defined in SP017 (TSP).	0 to 100 (%)	100

No.		lter	ns		Detai	ils		Setting range	Standard setting
3266 (PR)	SP066	VCSN1	Change starting speed of variable speed loop proportional gain	Set the speed proportional ga SP SP022x (SP065/11	ain change 1022	e starts.		0 to 32767 (r/min)	0
3267 (PR)	SP067	VIGWA	Change starting speed of variable current loop gain	Set the speed change starts.	where the	0 to 32767 (r/min)	0		
3268 (PR)	SP068	VIGWB	Change ending speed of variable current loop gain	Set the speed change ends.	where the	e current le	oop gain	0 to 32767 (r/min)	0
3269 (PR)	SP069	VIGN	Target value of variable current loop gain	SP017 (TSP) Maximum	nent and r a chang l68 (VIGW ameter is s 1. Gain fold	excitation e ending s /B). set to "0",	speed	0 to 32767 (1/16-fold)	0
				motor speed 0 to 6000	0	0	0		
				6001 to 8000 8001 or more	5000 5000	8000 10000	45 64		
3270	SP070	FHz	Machine resonance suppression filter frequency	When machine position contro required vibrat Note that a val Set to "0" when	l, set the ion supprouse of 100	d 0 to 3000 (Hz)	0		
3271 to 3275	SP071 to SP075			Use not possik	ole.	0	0		

No.		lter	ms	Details	Setting range	Standard setting
3276	SP076	FONS	Machine resonance suppression filter operation speed	When the vibration increases in motor stop (ex. in orientation stop) when the machine vibration suppression filter is operated by SP070, operate the machine vibration suppression filter at a speed of this parameter or more. When set to "0", this is validated for all speeds.	0 to 32767 (r/min)	0
3277 (PR)	SP077	TDSL	Fixed control constant	Set by Mitsubishi. Set "14" unless designated in particular.		14
3278 (PR)	SP078	FPWM	Fixed control constant	Set by Mitsubishi. Set "1" unless designated in particular.	1	1
3279	SP079			Use not possible.	0	0
3280	SP080	SWTD	Fixed control constant	Set by Mitsubishi. Set "0" unless designated in particular.	0	0
3281 to 3286	SP081 to SP086			Use not possible.	0	0
3287 (PR)	SP087	DIQM	Target value of variable torque limit magnifica- tion at deceleration	Set the minimum value of variable torque limit at deceleration.	0 to 150 (%)	75
3288 (PR)	SP088	DIQN	Speed for starting change of variable torque limit magnifica- tion at deceleration	Set the speed where the torque limit value at deceleration starts to change.	0 to 32767 (r/min)	3000
3289 to 3292	SP089 to SP092			Use not possible.	0	0
3293 (PR)	SP093	ORE	Tolerable pulse check error	Set this when detecting the pulse detector's pulse mistakes. (Valid only for full close control.)	0 to 32767	0
3294 (PR)	SP094	LMAV	Load meter output filter	Set the filter time constant of load meter output. When "0" is set, a filter time constant is set to 100ms.	0 to 32767 (2ms)	0
3295 (PR)	SP095	VFAV	Fixed control constant	Set by Mitsubishi. Set "0" unless designated in particular.	0	0

No.	lte	ms	Details	Setting range	Standard setting
3296 (PR)	SP096 EGAR	Encoder gear ratio	Set the gear ratio between the spindle end and the encoder end (except for the motor-built-in encoder) as indicated below. Setting Gear ratio (deceleration) 0 1 : 1 1 1 : 2 2 1 : 4 3 1 : 8 4 1 : 16 (Note) Use a combination so that the encoder end is slower than the spindle end.	0 to 4	0
3297 (PR)	SP097 SPEC	D Orientation specifica- tion	Critic is clowed than the opiniols of distribution of the opiniols of distribution of the opiniols of distribution of the opiniols of distribution of the opiniols of distribution of the opiniols of distribution of the opiniols of distribution of the opiniols of distribution of the opiniols of distribution distribution of distred din distribution of distribution of dist	0000 to FFFF HEX setting	0000

No.		lte	ms	Details	Setting range	Standard setting
3298 (PR)	SP098	VGOP	Speed loop gain propor- tional term in orientation mode	Set the speed loop proportional gain in orientation mode. When the gain is increased, rigidity is improved in the orientation stop but vibration and sound become larger.	0 to 2000 (1/s)	63
3299 (PR)	SP099	VGOI	Orientation mode speed loop gain integral term	Set the speed loop integral gain in orientation mode.	0 to 2000 (0.1 1/s)	60
3300 (PR)	SP100	VGOD	Orientation mode speed loop gain delay advance term	Set a loop gain delay advance gain in orientation mode. When this parameter is set to "0", PI control is applied.	0 to 1000 (0.1 1/s)	15
3301 (PR)	SP101	DINP	Orientation advance in-position width	When using the orientation in-position advance function, set the in-position width that is larger than the normal in-position width defined in SP004 (OINP).	1 to 2880 (1/16°)	16
3302 (PR)	SP102	OODR	Excessive error value in orientation mode	Set the excessive error width in orientation mode.	0 to 32767 (1/4 pulse) (1 pulse= 0.088°)	32767
3303 (PR)	SP103	FTM	Index positioning completion OFF time timer	Set the time for forcedly turn OFF the index positioning completion signal (different from the orientation completion signal) after the leading edge of the indexing start signal.	0 to 10000 (ms)	200
3304 (PR)	SP104	TLOR	Torque limit value for orientation servo locking	Set the torque limit value for orientation in-position output. If the external torque limit signal is input, the torque limit value set by this parameter is made invalid.	0 to 120 (%)	100
3305 (PR)	SP105	IQG0	Current loop gain magnifica- tion 1 in orientation mode	Set the magnification for current loop gain (torque component) at orientation completion.	1 to 1000 (%)	100
3306 (PR)	SP106	IDG0	Current loop gain magnifica- tion 2 in orientation mode	Set the magnification for current loop gain (excitation component) at orientation completion.	1 to 1000 (%)	100
3307	SP107	CSP2	Deceleration rate 2 in orientation mode	Set the deceleration rate in orientation mode corresponding to the gear 001. When this parameter is set to "0", same as SP006 (CSP).	0 to 1000	0
3308	SP108	CSP3	Deceleration rate 3 in orientation mode	Set the deceleration rate in orientation mode corresponding to the gear 010. When this parameter is set to "0", same as SP006 (CSP).	0 to 1000	0

No.		Ite	ms	Details	Setting range	Standard setting
3309	SP109	CSP4	Deceleration rate 4 in orientation mode	Set the deceleration rate in orientation mode corresponding to the gear 011. When this parameter is set to "0", same as SP006 (CSP).	0 to 1000	0
3310 to 3313	SP110 to SP003			Use not possible.		0
3314	SP114	OPER	Orientation pulse miss check value	An alarm "5C" will occur if the pulse miss value at the orientation stop exceeds this setting value. (Note that this is invalid when set to "0".) In this parameter, set the value to fulfill the following conditions. SP114 setting value > 1.5 × SP004 (orientation in-position width)	0 to 32767 (360°/4096)	0
3315	SP115	OSP2	Orientation motor speed clamp value 2	When the orientation clamp speed is changed by the control input, this parameter setting will be used instead of SP005: OSP. Indexing speed clamp valid This parameter is used when (SP097: SPEC0-bit4 = 1).	0 to 32767 (r/min)	0
3316	SP116			Use not possible.	0	0
3317	SP117	ORUT		Set by Mitsubishi. Set "0" unless designated in particular.	0	0
3318	SP118	ORCT	Number of orientation retry times	Set the number of times to retry when an orientation or feedback error occurs. The warning (A9) is issued while retrying orientation, and an alarm (5C) is issued when the set number of times is exceeded.	0 to 100 (time)	0
3319	SP119	MPGH	Orientation position gain H winding compensa- tion magnifi- cation	Set the compensation magnification of the orientation position loop gain for the H winding. H winding orientation position loop gain = SP001 (or SP002) × SP119/256 When set to "0", will become the same as SP001 or SP002.		0
3320	position gain L winding compensa- tion magnifi- cation = SP(Set the compensation magnification of the orientation position loop gain for the L winding. L winding orientation position loop	0 to 2560 (1/256-fold)	0	

No.		Items	6	Details	Setting range	Standard setting
3321	SP121	MPCSH	Orientation deceleration rate H winding compensa- tion magnifi- cation	Set the compensation magnification of the orientation deceleration rate for the H winding. Orientation deceleration rate for the H winding = SP006 × SP121/256 When set to "0", will become the same as SP006.	0 to 2560 (1/256-fol d)	0
3322	SP122	MPCSL	Orientation deceleration rate L winding compensa- tion magnifi- cation	Set the compensation magnification of the orientation deceleration rate for the L winding. Orientation deceleration rate for the L winding = SP006 × SP122/256 When set to "0", will become the same as SP006.	0 to 2560 (1/256-fol d)	0
3323 to 3325	SP123 to SP125			Use not possible.	0	0
3326	SP126	MPGH	Orientation position gain M coil com- pensation	Set this to set the orientation position loop gain for the coil changeover motor to the M coil's unique value.	0 to 2560 (1/256- fold)	0
3327	SP127	MPCSM	Orientation deceleration rate M coil compensa- tion	Set this to set the orientation deceleration rate for the coil motor to the M coil's unique value.	0 to 2560 (1/256- fold)	0
3328	SP128	ОХКРМ	Position loop gain magnifi- cation after orientation gain change- over (M coil)	Set the M coil gain magnification to be used after in-position when gain changeover is valid (SP097: SPEC0-bitC=1) during orientation.	0 to 2560 (1/256- fold)	0

No.		Item	Items Details										Setting range	Standard setting
3329 (PR)	SP129	SPECC	C-axis specifica-	Set	the	C-a	xis sp	ecifica	ations	s in bit	units.			0000
			tions	F	-	E ptyp	D fb9x	C zrtd	B zrn2	A	9 zdir	8 ztyp		
				7		6	5	4	3	2	1	0		
				vg	1	0	fdir	4	phos	1		fclx		
				(No	ote)	Alwa	ays set	"0" fo	r the e	empty b	oits.			
				bit	Nam		aning w			Meaning				
				0	fclx	Clo	osed loop	р		Semi-clo (Gear 1 :	sed loop 1 only))		
				1 2	rtrn		sition mo			Position ready OF		during		
				3 phos Normal (no compensation)						Vx4 sync compens				
				5	fdir		sition de arity (+)	tector		Position polarity (
				6 7	vg8>		eed gair que limit			Speed gator				
				8	ztyp	Z-p sta	hase ty rt up	pe: Nori	mal	Z-phase only	type: St	art up		
				9 A	zdir	Z-p (+)	hase ris	ing pola		Z-phase (–)	rising po	olarity		
				B	zrn2 zrtd	_	is is use t to "0" ι			rly desigr	nated.			
				D	fb9×		eed feed andard (l			Speed fe 90,000 p				
				Е	ptyp	typ	sition co e: After urn		int	Position type: After stop	er decel	eration		
				F	zrtn		ro point ection: C			Zero poir direction	t return CW			
3330	SP130	PGC1	First position loop gain for cutting on C-axis				tion lo C axi			nen the	first (gain is	1 to 200 (1/s)	15

No.		lte	ems	Details	Setting range	Standard setting
3331	SP131	PGC2	Second position loop gain for cutting on C-axis	Set the position loop gain when the second gain is selected for C axis cutting.	1 to 200 (1/s)	15
3332	SP132	PGC3	Third position loop gain for cutting on C-axis	Set the position loop gain when the third gain is selected for C-axis cutting.	1 to 200 (1/s)	15
3333	SP133	PGC4	Stop position loop gain for cutting on C-axis	Set the position loop gain for stopping when carrying out C-axis cutting.	1 to 200 (1/s)	15
3334 (PR)	SP134	VGCP0*	C-axis non-cutting speed loop gain proportional item	Set the speed loop proportional gain in C-axis non-cutting mode.	0 to 5000 (1/s)	63
3335 (PR)	SP135	VGCI0	C-axis non-cutting speed loop gain integral item	Set the speed loop integral gain in C-axis non-cutting mode.	0 to 5000 (0.1 1/s)	60
3336 (PR)	SP136	VGCD0	C-axis non-cutting speed loop gain delay advance item	Set the speed loop delay advance gain in C-axis non-cutting mode. When this parameter is set to "0", PI control is exercised.	0 to 5000 (0.1 1/s)	15
3337 (PR)	SP137	VGCP1	First speed loop gain proportional item for C-axis cutting	Set the speed loop proportional gain when the first gain is selected for C-axis cutting.	0 to 5000 (1/s)	63
3338 (PR)	SP138	VGCI1	First speed loop gain integral item for cutting on C-axis	Set the speed loop integral gain when the first gain is selected for C-axis cutting.	0 to 5000 (0.1 1/s)	60
3339 (PR)	SP139	VGCD1	First speed loop gain delay advance item for cutting on C-axis	Set the speed loop delay advance gain when the first gain is selected for curing on the C-axis. When this parameter is set to "0", PI control is applied.	0 to 5000 (0.1 1/s)	15
3340 (PR)	SP140	VGCP2	Second speed loop gain proportional item for cutting on C-axis	Set the speed loop proportional gain when the second gain is selected for C-axis cutting.		63
3341 (PR)	SP141	VGCI2	Second speed loop gain integral item for cutting on C-axis	Set the speed loop integral gain when the second gain is selected for C-axis cutting.	0 to 5000 (0.1 1/s)	60
3342 (PR)	SP142	VGCD2	Second speed loop gain delay advance item for cutting on C-axis	Set the speed loop delay advance gain when the second gain is selected for C-axis cutting. When this parameter is set to "0", PI control is applied.	0 to 5000 (0.1 1/s)	15

No.		lte	ems	Details	Setting range	Standard setting
3343 (PR)	SP143	VGCP3	Third speed loop gain proportional item for cutting on C-axis	Set the speed loop proportional gain when the third gain is selected for C-axis cutting.	0 to 5000 (1/s)	63
3344 (PR)	SP144	VGCI3	Third speed loop gain integral item for cutting on C-axis	Set the speed loop integral gain when the third gain is selected for C-axis cutting.	0 to 5000 (0.1 1/s)	60
3345 (PR)	SP145	VGCD3	Third speed loop gain delay advance item for cutting on C-axis	Set the speed loop delay advance gain when the third gain is selected for C-axis cutting. When this parameter is set to "0", PI control is applied.	0 to 5000 (0.1 1/s)	15
3346 (PR)	SP146	VGCP4	Speed loop gain propor- tional item for stop of cutting on C-axis	Set the speed loop proportional gain when C-axis cutting is stopped.	0 to 5000 (1/s)	63
3347 (PR)	SP147	VGCI4	Speed loop gain integral item for stop of cutting on C-axis	Set the speed loop integral gain when C-axis cutting is stopped.	0 to 5000 (0.1 1/s)	60
3348 (PR)	SP148	VGCD4	Speed loop gain delay advance item for stop of cutting on C-axis	Set the speed loop delay advance gain when C-axis cutting is stopped. When this parameter is set to "0", PI control is applied.	0 to 5000 (0.1 1/s)	15
3349	SP149	CZRN	C-axis zero point return speed	This parameter is valid when SP129 (SPECC) bitE is set to "0". Set the zero point return speed used when the speed loop changes to the position loop.	1 to 500 (r/min)	50
3350	SP150	CPDT	return	This parameter is valid when SP129 (SPECC) bitE is set to "0". Set the deceleration rate where the machine starts to decelerate when it returns to the target stop point during C-axis zero point return. When the machine tends to overshoot at the stop point, set the smaller value.	1 to 10000	1
3351	SP151	CPSTL	C-axis zero point return shift amount (low byte)	This parameter is valid when SPECC (SP129) bitE is set to "0". Set the C-axis zero point position.	HEX setting 00000000 to FFFFFFF (1/1000°)	H: 0000 L: 0000
3352	SP152	CPSTH	C-axis zero point return shift amount (high byte)			

No.		lte	ems	Details	Setting range	Standard setting
3353	SP153	CINP	C-axis in-position width	Set the position error range in which the in-position signal is output on the C-axis.	0000 to FFFF (1/1000°) HEX setting	03E8
3354 (PR)	SP154	CODRL	Excessive error width on C-axis (low byte)	Set the excessive error width on the C-axis.	HEX setting 00000000 to FFFFFFF	H: 0001 L: D4C0
3355 (PR)	SP155	CODRH	Excessive error width on C-axis (high byte)		(1/1000°)	
3356	SP156	OVSH	C-axis overshoot compensa- tion	Set this to prevent overshooting when shifting from movement to stopping with C-axis control. (Set this referring to the load meter display when overshooting occurred.)	0 to 1000 (0.1%)	0
3357	SP157			Not used. Set to "0".	0	0
3358	SP158			Not used. Set to "0".	0	0
3359	SP159		1	Use not possible.	0	0
3360	SP160			Use not possible.	0	0
3361 (PR)	SP161	IQGC0	Current loop gain magnifi- cation 1 for non-cutting on C-axis	Set the magnification of current loop gain (torque component) for C-axis non-cutting.	1 to 1000 (%)	100
3362 (PR)	SP162	IDGC0	Current loop gain magnifi- cation 2 for non-cutting on C-axis	Set the magnification of current loop gain (excitation component) for C-axis non-cutting.	1 to 1000 (%)	100
3363 (PR)	SP163	IQGC1	Current loop gain magnifi- cation 1 for cutting on C-axis	Set the magnification of current loop gain (torque component) for C-axis cutting.	1 to 1000 (%)	100
3364 (PR)	SP164	IDGC1	Current loop gain magnifi- cation 2 for cutting on C-axis	Set the magnification of current loop gain (excitation component) for C-axis cutting.	1 to 1000 (%)	100
3365	SP165	PG2C	C-axis position loop gain 2	Set the second position loop gain when high-gain control is carried out for control of the C-axis. This parameter is applied to all the operation modes of C-axis control. When this function is not used, assign "0".	0 to 999 (1/s)	0

No.		lter	ns	Details	Setting range	Standard setting
3366	SP166	PG3C	C-axis position loop gain 3	Set the third position loop gain when high-gain control is carried out for control of the C-axis. This parameter is applied to all the operation modes of C-axis control. When this function is not used, assign "0".	0 to 999 (1/s)	0
3367 (PR)	SP167	PGU	Position loop gain for increased spindle holding force	Set the position loop gain for when the disturbance observer is valid.	0 to 100 (1/s)	15
3368 (PR)	SP168	VGUP	Speed loop gain proportional item for increased spindle holding force	Set the speed loop gain proportional item for when the disturbance observer is valid.	0 to 5000 (1/s)	63
3369 (PR)	SP169	VGUI	Speed loop gain integral item for increased spindle holding force	Set the speed loop gain integral item for when the disturbance observer is valid.	0 to 5000 (0.1 1/s)	60
3370 (PR)	SP170	VGUD	Speed loop gain delay advance item for increased spindle holding force	Set the speed loop gain delay advance item for when the disturbance observer is valid.	0 to 5000 (0.1 1/s)	15
3371 to 3376	SP171 to SP176			Not used. Set to "0".	0	0

No.		Details									Setting range	Standard setting		
3377 (PR)	SP177	SPECS	synchronous		the sunits.		ndle s	ynch	rono	us sp	ecifica	ations in	0000 to FFFF	0000
			specifica-	F	E		D	С	В	Α	9	8	HEX	
			tions				odx8					phos	setting	
				7	6		F	4	2	2	1	0		
				7	6)	5 fdir	4	3 mac	2 h	1	0 fclx		
				-		_	iun		mac			ICIX		
				bit	Name		aning v		et to O			en set to 1		
				0	fclx	Clo	osed loc	р		Semi-	closed I	оор		
				2										
				3	mach	OVe	tomatic er during nchroniz	g spind	le	over o	natic coi during sp ronizatio	l change- pindle on valid		
				4		J		allorri	Ivaliu	Synci	TOTIZAL	on valid		
				5	fdir		sition de n (positi					ctor direc- direction)		
				6										
				7 8										
				9										
				A B										
				С										
				D	odx8	exc	ignificat cessive imes inv	error w	idth ×	exces	ification sive errest s valid	of or width ×		
				E		(1)	sed with							
					_			-						
3378 (PR)	SP178	VGSP	Spindle synchronous speed loop gain propor- tional term				ed loo chron				gain i	n	0 to 2000 (1/s)	63
3379 (PR)	SP179	VGSI	Spindle synchronous speed loop gain integral term				ed loo is mo		egra	l gain	in sp	indle	0 to 2000 (0.1 1/s)	60
3380 (PR)	SP180	VGSD	Spindle synchronous speed loop gain delay advance term	spii Wh	ndle s	syn	chron	ous	node	Э.	ce ga ", PI c	in in control is	0 to 1000 (0.1 1/s)	15
3381 (PR)	3381 SP181 VCGS Spindle												0 to 100 (%)	100

No.		Iter	ns	Details	Setting range	Standard setting
3382 (PR)	SP182	VCSS	Spindle synchronous Change starting speed of variable speed loop proportional gain	0 to 32767 (r/min)	0	
3383	SP183	SYNV	Spindle synchronous Sync match- ing speed	For changeover from the speed loop to the position loop in the spindle synchronous mode, set a speed command error range for output of the synchronous speed matching signal.	0 to 1000 (r/min)	20
3384 (PR)	SP184	FFCS	Spindle synchronous Acceleration rate feed forward gain	Set the acceleration rate feed forward gain in the spindle synchronous mode. This parameter is used only with the SPJ2.	0 to 1000 (%)	0
3385	SP185	SINP	Spindle synchronous In-position width	Set the position error range for output of the in-position signal in the spindle synchronous mode.	1 to 2880 (1/16°)	16
3386 (PR)	SP186	SODR	Spindle synchronous Excessive error width	Set the excessive error width in the spindle synchronous mode.	1 to 32767 (pulse) (1 pulse =0.088°)	32767
3387 (PR)	SP187	IQGS	Spindle synchronous Current loop gain magnifi- cation1	Set the magnification of current loop gain (torque component) in the spindle synchronous mode.	1 to 1000 (%)	100
3388 (PR)	SP188	IDGS	Spindle synchronous Current loop gain magnifi- cation 2	Set the magnification of current loop gain (excitation component) in the spindle synchronous mode.	1 to 1000 (%)	100
3389	SP189	PG2S	Spindle synchronous Position loop gain 2	Set the second position loop gain when high-gain control is carried out in the spindle synchronous mode. When this parameter function is not used, set to "0".	0 to 999 (1/s)	0

No.		Ite	ns				De	tails				Setting range	Standard setting
3390	SP190	PG3S	Spindle synchronous Position loop gain 3	con syn	trol is chron en this	ird posi carried ous mo s param	out in de.	the s	spindle			0 to 999 (1/s)	0
3391	SP191			Use	not p	ossible		0	0				
3392	SP192			Not	used.	Set to							
3393 (PR)	SP193	SPECT	Synchronized tapping specifications		nits. E n pty	p od8x	C 4 cdir when s op nonitor of F invalio d polarit detector r) ensation ensation ensation control s r zero p t return	B 3 pyfx set to 0 during y (+) n)	A 2 rtrn Semi-clc (Gear 1 Position ready O Comma Position polarity Synchro position polarity Synchro position for sync high-gai	9 1 g wher osed loo : 1 only monito FF valid detect (-) nized t comma sation sation sation o ve error valid contro cer decc	8 phos 0 fclx set to 1 op // r during d r during d fclx set to 1 op // r during d fclx set to 1 op // fclx set to 1 fclx set to 1 fclx set to 1 fclx set to 1 fclx set to 1 fclx set to 1 fclx set to 1 fclx fclx fclx set to 1 fclx fclx set to 1 fclx	0000 to FFFF HEX setting	0000

No.		lter	ns	Details	Setting range	Standard setting
3394 (PR)	SP194	VGTP	Synchronized tapping speed loop gain proportional term	Set the speed loop proportional gain in synchronized tapping mode.	0 to 2000 (1/s)	63
3395 (PR)	SP195	VGTI	Synchronized tapping speed loop gain integral term	Set the speed loop integral gain in synchronized tapping mode.	0 to2000 (0.1 1/s)	60
3396 (PR)	SP196	VGTD	Synchronized tapping speed loop gain delay advance term	Set the speed loop delay advance gain in synchronized tapping mode. When this parameter is set to "0", PI control is applied.	0 to 1000 (0.1 1/s)	15
3397	SP197			Use not possible.	0	0
3398 (PR)	SP198	VCGT	Synchronized tapping target value of variable speed loop proportional gain	Set the magnification of speed loop proportional gain with respect to SP194 (VGTP) at the maximum motor speed defined in SP017 (TSP) in synchronized tapping mode.	0 to 100 (%)	100
3399 (PR)	SP199	VCST	Synchronized tapping change starting speed of variable speed loop proportional gain	Set the speed where the speed loop proportional gain change starts during synchronized tapping. SP194 SP194 SP194 SP194 SP194 SP199 SP017	0 to 32767 (r/min)	0

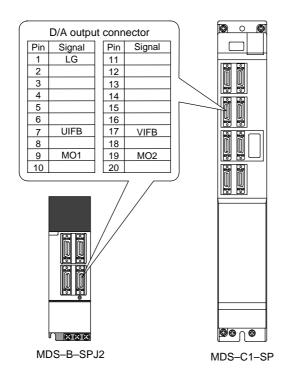
No.		lte	ems	Details	Setting range	Standard setting
3400 (PR)	SP200	FFC1	Synchronized tapping acceleration feed forward gain (gear 1)	Set the acceleration feed forward gain for selection of gear 000 during synchronized tapping. This parameter should be used when an error of relative position to Z-axis servo is large.	0 to 1000 (%)	0
3401 (PR)	SP201	FFC2	Synchronized tapping acceleration feed forward gain (gear 2)	Set the acceleration feed forward gain for selection of gear 001 during synchronized tapping.	0 to 1000 (%)	0
3402 (PR)	SP202	FFC3	Synchronized tapping acceleration feed forward gain (gear 3)	Set the acceleration feed forward gain for selection of gear 010 during synchronized tapping.	0 to 1000 (%)	0
3403 (PR)	SP203	FFC4	Synchronized tapping acceleration feed forward gain (gear 4)	Set the acceleration feed forward gain for selection of gear 011 during synchronized tapping.	0 to 1000 (%)	0
3404	SP204		Fixed control constant	This is used by Mitsubishi. Set to "0" unless particularly designated.	0	0
3405	SP205					
3406	SP206	GCK	Reverse run detection error detection width	 When the motor moves (including movement with external force), the motor overrun alarm (3E) will be detected even if the speed command is 0 (including position control stop command) during servo ON (gate ON). Set the movement amount to be detected as an alarm. 0: Detect with 10° motor movement amount (Recommended setting) 1: Detect with 20° motor movement amount 2: Detect with 40° motor movement amount 	0/1/2	0

No.		Items		Details	Setting range	Standard setting
3407	SP207	GDL	Sequential mode startup timing	 To carry out spindle synchronization or C-axis control in the both-chuck state with no movement immediately after the power is turned ON, set this parameter so that the reverse run detection function will function correctly. Set so that servo ON timing for the opposing spindle has the combination of (1) and (2) shown in the drawing below. 0: Servo turns ON simultaneously with servo ON command, and servo ON status is returned immediately. 1: Gate turns ON at pattern (1) shown below, and servo ON status is returned two seconds later. 2: Gate turns ON at pattern (2) shown below, and servo ON status is returned two seconds later. 	0/1/2	0
				Servo ON command Servo ON (1) Gate ON 700ms 300ms Gate O Servo ON (2) 2s Servo ON status 2s	N 300ms	Servo ON >
3408	SP208	W2		This is used by Mitsubishi. Set to "0" unless particularly designated.	0	0
3409 to 3413	SP209 to SP213			Not used. Set to "0".	0	0
3414	SP214	TZRN	Synchronized tapping zero point return speed	This parameter is valid when SP193 (SPECT) bitE is set to "0". Set the zero point return speed used when the speed loop changes to the position loop.		
3415	SP215	TPDT	Synchronized tapping zero point return deceleration rate	This parameter is valid when SP193 (SPECT) bitE is set to "0". Set the deceleration rate where the machine starts to decelerate when it returns to the target stop point during synchronized tapping zero point return. When the machine tends to overshoot at the stop point set a smaller value.	0 to 10000 (pulse)	1
3416	SP216	TPST	Synchronized tapping zero point return shift amount	This parameter is valid when SP193 (SPECT) bitE is set to "0". Set the synchronized tapping zero point position.	0 to 4095	0

No.		lte	ms	Details	Setting range	Standard setting
3417	SP217	TINP	Synchronized tapping in-position width	Set the position error range for output of the in-position during synchronized tapping.	1 to 2880 (1/16°)	16
3418 (PR)	SP218	TODR	Synchronized tapping excessive error width	Set the excessive error width during synchronized tapping.	1 to 32767 (pulse) (1 pulse =0.088°)	32767
3419 (PR)	SP219	IQGT	Synchronized tapping current loop gain magnifi- cation 1	Set the magnification of current loop gain (torque component) during synchronized tapping.	1 to 1000 (%)	100
3420 (PR)	SP220	IDGT	Synchronized tapping current loop gain magnifi- cation 2	Set the magnification of current loop gain (excitation component) during synchronized tapping.	1 to 1000 (%)	100
3421	SP221	PG2T	Synchronized tapping position loop gain 2	Set the second position loop gain when high-gain control is applied during synchronized tapping. When this parameter is not used, set to "0".	0 to 999 (1/s)	0
3422	SP222	PG3T	Synchronized tapping position loop gain 3	Set the third position loop gain when high-gain control is applied during synchronized tapping. When this parameter is not used, set to "0".	0 to 999 (1/s)	0
3423	SP223	SPDV	Speed monitor speed	Set the spindle limit speed in the door open state. (Invalid when 0 is set.) If the spindle end speed exceeds this setting value when the door is open, the speed monitor error (5E) will occur.	0 to 800 (r/min)	0
3424	SP224	SPDF	Speed monitor time	Set the time (continuous) to detect alarms. (Detected instantly when 0 is set.)	0 to 2813 (3.5ms)	0

No.		lte	ms	Details	Setting range	Standard setting
3425	SP225	ОХКРН	Position loop gain magni- fication after orientation gain changeover (H coil)	If gain changeover is valid (SP097: SPEC0-bitC=1) during orientation, set the magnification of each gain changed to after in-position.	0 to 2560 (1/256-fold)	0
3426	SP226	OXKPL	Position loop gain magni- fication after orientation gain changeover (L coil)		0 to 2560 (1/256-fold)	0
3427	SP227	OXVKP	Speed loop proportional gain magnifi- cation after orientation gain changeover		0 to 2560 (1/256-fold)	0
3428	SP228	OXVKI	Speed loop cumulative gain magnifi- cation after orientation gain changeover	If gain changeover is valid (SP097: SPEC0-bitC=1) during orientation, set the magnification of each gain changed to after in-position.	0 to 2560 (1/256-fold)	0
3429	SP229	OXSFT	Orientation virtual target shift amount	Set the amount to shift the target position when orientation virtual target position is valid (SP097: SPEC0-bitD=1).	0 to 2048 (360°/4096)	0
3430 to 3432	SP230 to SP232			Use not possible.		
3433 (PR)	SP233	JL	Disturbance observer general inertia scale	Set the ratio of the motor inertia + load inertia and motor inertia. $\frac{\text{Setting}}{\text{value}} = \frac{\text{Motor inertia + load inertia}}{\text{Motor inertia}} \times 100$ (Normally, set "100" or more. When less than "50" is set, the setting will be invalid.) To calculate speed loop gain with general inertia scale: The effective proportional gain and effective cumulative gain during the speed control are changed at the set scale.	0 to 5000 (%)	0
3434 (PR)	SP234	OBS1	Disturbance observer low path filter frequency	Set the frequency of the low path filter for when the disturbance observer is valid. Setting (1/s) = $2\pi f$ f: Approx. 1.5 times the disturbance frequency	0 to 1000 (1/s)	0

No.	No. Items Details		Details	Setting range	Standard setting	
3435 (PR)	SP235	OBS2	Disturbance observer gain	Set the gain for the disturbance observer.	0 to 500 (%)	0
3436	SP236	OBS3	Fixed control constant	This is used by Mitsubishi. Set to "0" unless particularly designated.	0	0
3437	SP237	KSCP	Fixed control constant	This is used by Mitsubishi. Set to "0" unless particularly designated.	0	0
3438	SP238	SEZR				
3439	SP239	SEZT				
3440	SP240			Use not possible.	0	0
3441	SP241			Use not possible.	0	0
3442	SP242	Vavx		This is used by Mitsubishi. Set to "0" unless particularly designated.	0	0
3443	SP243	UTTM			0	0
3444	SP244	OPLP		Use not possible.	0	0
3445	SP245	PGHS		This is used by Mitsubishi. Set to "0" unless particularly designated.	0	0
3446	SP246	TEST			0	0
3447 to 3448	SP247 to SP248			Use not possible.	0	0
3449	SP249	SM0	Speed meter speed	Set the motor rotation speed when the speed meter 10V is output. When set to "0", this parameter becomes the same as SP017 (TSP).	0 to 32767 (r/min)	0
3450	SP250	LM0	Load meter voltage	Set the voltage when the load meter 120% is output. When set to "0", this becomes 10V.	0 to 10 (V)	0
3451 to 3452	SP251 to SP252			Use not possible.	0	0


No.		ltem	S	Details	Setting range	Standard setting
3453	SP253	DA1NO	D/A output channel 1 data number	Set the output data number for channel 1 of the D/A output function. When set to "0", the output is speedometer. Refer to "9.4 (1) For D/A output functions".	-32768 to 32767	0
3454	SP254	DA2NO	D/A output channel 2 data number	Set the output data number for channel 2 of the D/A output function. When set to "0", the output is load meter. Refer to "9.4 (1) For D/A output functions".	–32768 to 32767	0
3455	SP255	DA1MPY	DA output channel 1 magnifica- tion	Set the data magnification for channel 1 of the D/A output function. The output magnification is the setting value divided by 256. When set to "0", the output magnification becomes 1-fold, in the same manner as when "256" is set. Refer to "9.4 (1) For D/A output functions".	-32768 to 32767 (1/256-fold)	0
3456	SP256	DA2MPY	DA output channel 2 magnifica- tion	Set the data magnification for channel 2 of the D/A output function. The output magnification is the setting value divided by 256. When set to "0", the output magnification becomes 1-fold, in the same manner as when "256" is set. Refer to "9.4 (1) For D/A output functions".	-32768 to 32767 (1/256-fold)	0
3457 (PR) to 3520 (PR)	SP257 to SP320		Motor constant (H coil)	 This parameter is valid only in the following two conditional cases: (a) In case that SP034 (SFNC2) bit0=1 and SP034 (SFNC2) bit2=0 Set the motor constants when using a special motor, not described in the SP040 (MTYP) explanation and when not using the coil changeover motor. (b) In case that SP034 (SFNC2) bit2=1 and SP034 (SFNC2) bit2=1 Set the motor constant of the H coil of the coil changeover motor. (Note) It is not allowed for the user to change the setting. 	0000 to FFFF HEX setting	0000
3521 (PR) to 3584 (PR)	SP321 to SP384		Motor constant (L coil)	 This parameter is valid only in the following conditional case: (a) In case that SP034 (SFNC2) bit0=1 and SP034 (SFNC2) bit2=1 Set the motor constant of the L coil of the coil changeover motor. (Note) It is not allowed for the user to change the setting. 	0000 to FFFF HEX setting	0000

8.5 Supplement

8.5.1 D/A Output Specifications

(1) D/A output specifications

Item	Explanation
No. of channels	2ch
Output cycle	444µs (min. value)
Output precision	8bit
Output voltage	0V to +5V (zero) to +10V,
range	0V to +10V during meter output
Output scale setting	1/256 to \pm 128 tiems
Output pins	CN9 connector MO1 = 9 pin MO2 = 19 pin GND = 11pin
Function	Phase current feedback output function U-phase current FB: 7 pin

(2) Setting the output data

Input the No. of the data to be output to each D/A output channel.

#	No.	Abbrev	Parameter name
3453	SP253	DA1NO	D/A output channel 1 data No.
3454	SP254	DA2NO	D/A output channel 2 data No.

			Standard setting value		
N			for output scale	Standard	Output
No.	Output data	Original data unit	(Setting values in	output unit	cycle
			SP255, SP256)	•	-
	ch1: Speed meter	10V=max. speed	0	Depends on	3.55ms
	output	(0=0V)		the max.	
0				speed	
	ch2: Load meter	10V=120% load (0=0V)	0	Rated	3.55ms
	output			12%/V	
1	-				
2	Current command	Rated 100% = 4096	8	Rated	3.55ms
			-	20%/V	
3	Current feedback	Rated 100% = 4096	8	Rated	3.55ms
	<u> </u>	, .	10	20%/V	
4	Speed feedback	r/min	13	500rpm/V	3.55ms
5	-				
6	Position droop	1° = (64000/65536)	671	10°/V	888µs
7					
_	Feedrate (F∆T)	1° = (64000/65536)	629	500rpm/V	888µs
8			(When communicating		
_			by 3.5ms)		
9	- Desition commond	48 (04000/05520)	40 (40 C4)	2008/1/	000
10	Position command	1° = (64000/65536)	19 (18.64)	360°/V	888µs
11	- Desition feedback	48 (04000/05520)	10 (18 C4)	2008/1/	000
12	Position feedback	1° = (64000/65536)	19 (18.64)	360°/V	888µs
13	- Control input 1	HEX	Dit corrector de rec		0.55mg
80	Control input 1	HEX	Bit correspondence		3.55ms
81	Control input 2				
82	Control input 3				
83	Control input 4		Dit correction denses		255
84	Control output 1	HEX	Bit correspondence		3.55ms
85	Control output 2				
86	Control output 3				
87	Control output 4		0 (050)	Cuala	444.00
125	Saw-tooth wave		0 (256)	Cycle 227.5ms	444µs
	test output		0 (256)	Cycle 1.7ms	444µs
126	Rectangular wave		0 (200)	Cycle 1./ms	444µS
<u> </u>	test output 2.5V(data0) test		0 (256)		44400
127			0 (256)	-	444µs
	output				

(3) Setting the output scale

#	No.	Abbrev	Parameter name
3455	SP255	DA1MPY	D/A output channel 1 magnification
3456	SP256	DA2MPY	D/A output channel 2 magnification

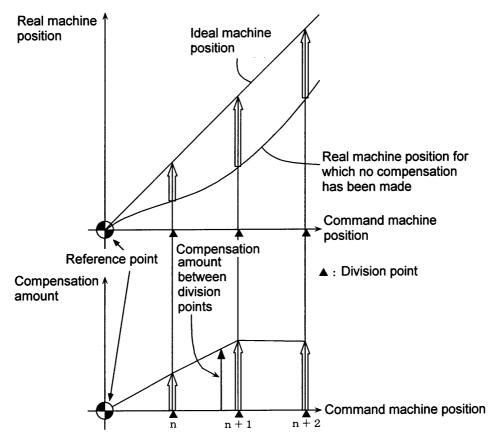
Usually, the standard setting value is set for the output scale (SV063, SV 064). When "0" is set, the output will be made as well as when "256" is set.

DATA x $\frac{SP255}{256}$ x $\frac{10 [V]}{256 (8bit)}$ + 5 [V] (offset) = Output voltage [V]

(Example) When outputting the position droop with $10^{\circ}/V$.

$$\frac{-640000}{65536} \times \frac{-671}{256} \times \frac{10}{256} + 5 = 5.999 \, [V]$$

9. Machine Error Compensation


9.1 Function Outline

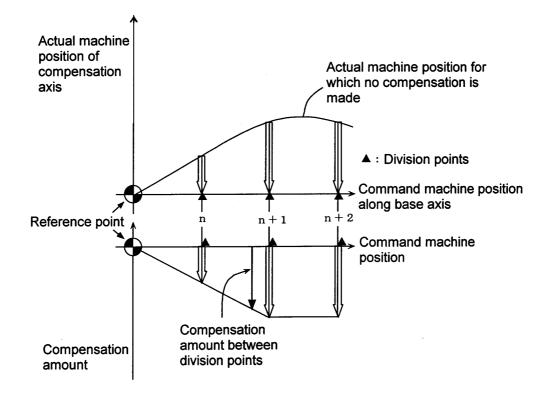
Machine error compensation includes two independent functions: memorized pitch error compensation and memorized relative position compensation.

(1) Memorized pitch error compensation

According to the specified parameters, this method compensates an axis feed error caused by a ball screw pitch error, etc.

With the reference point defined as the base, as shown in the following figure, set the compensation amount in the division points obtained by equally dividing the machine coordinates. The compensation amount can be set by either the absolute or incremental system. Select the desired method with the "#4000 Pinc". Machine position is compensated between division points n and n+1 as much as compensation amount between them by linear approximation.

Relationship between the compensation amount and machine position


(2) Memorized relative position compensation

This method, according to the parameters specified in advance, compensates the relative position error between two orthogonal axes caused by deflection of the moving stand.

For this, as shown in the following figure, specify the compensation amount in the compensation axis direction in the division points obtained by equally dividing the machine coordinates of the base axis.

The base axis is one of the two orthogonal axes to which relative position compensation applies. This axis is used as the criterion for relative-error measurement. The compensation axis is the coordinate axis that is orthogonal to the base axis. The compensation is actually made for this coordinate axis.

The section between division points n and n+1 is compensated smoothly by linear approximation.

Relationship between the compensation amount and machine position

#	Item Details		Setting range
400 (PF	 Machine error offset increment method	Specify whether the incremental volume method or absolute volume method is to be used to set machine error offset data.	0: Absolute volume method1: Incremental volume method

#		ltem	Details	Setting range
4001	cmpax	Basic axis	 Specify the basic axis address for machine error compensation. 1) For pitch error compensation, set the name of the axis to be compensated. 2) For relative position compensation, set the name of the axis to be the base axis. 	X, Y, Z, U, V, W, A, B, or C axis address
4002	drcax	Compensation axis	 Set the compensation axis address for machine error compensation. 1) For pitch error compensation, set the same axis name as "#4001 cmpax". 2) For relative position compensation, set the name of the axis to be actually compensated. 	X, Y, Z, U, V, W, A, B, or C axis address
4003	rdvno	Division point number at reference point position	Set the compensation data No. corre- sponding to the reference point position. The reference point is actually the base, so there is no compensation No. Set the number that is decremented by 1.	4101 to 5124
4004	mdvno	Division point number at the most negative side	Set the compensation data No. that is on the farthest negative side.	4101 to 5124
4005	pdvno	Division point number at the most positive side	Set the compensation data No. that is on the farthest positive side.	4101 to 5124
4006	SC	Compensation scale factor	Set the compensation amount's scale. When the compensation scale is set to "1", the compensation amount unit will be the same as the output unit. Compensation amount unit = unit of output × compensation scale	0 to 99
4007	spcdv	Division interval	Set the interval to divide the basic axis. Each compensation data will be the compensation amount for each of these intervals.	1 to 9999999(μm)

2nd	3rd	4th	5th	6th	7th	8th	9th	10th	
axis	axis	axis	axis	axis	axis	axis	axis	axis	
4011	4021	4031	4041	4051	4061	4071	4081	4091	Set the parameters
4012	4022	4032	4042	4052	4062	4072	4082	4092	corresponding to the 1st axis'
4013	4023	4033	4043	4053	4063	4073	4083	4093	parameters 4001 to 4007 for each
4014	4024	4034	4044	4054	4064	4074	4084	4094	axis.
4015	4025	4035	4045	4055	4065	4075	4085	4095	A maximum of 6 axes can be
4016	4026	4036	4046	4056	4066	4076	4086	4096	controlled, but as the relative
4017	4027	4037	4047	4057	4067	4077	4087	4097	position is compensated, settings
									for 10 axes can be made.

#	Item	Details	Setting range
4101		Set the compensation amount for each	-128 to 127
•		axis.	The actual
•			compensation
•			amount will be the
5124			value obtained by
			multiplying the
			setting value with the
			compensation scale.

9.2 Setting Compensation Data

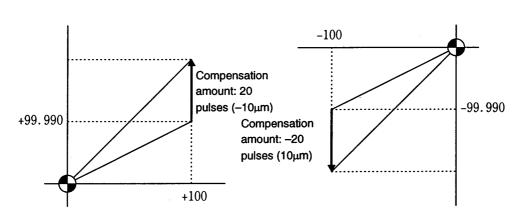
Compensation data can be set according to either absolute or incremental system.

0: Absolute system

1: Incremental system

(1) Absolute system

"#4000:Pinc"


Feed from the reference point to each division point is executed as shown in the following figure. The following is obtained at this time. Set it as the compensation amount.

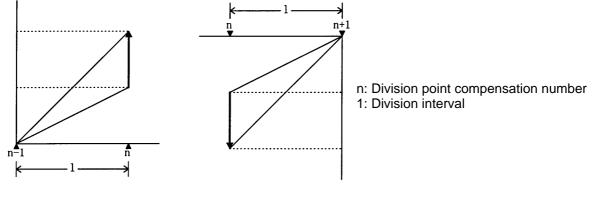
(Specified position – Real machine position) \times 2 (Unit of output)

For example, assume that the feed from the reference point to the +100mm position is executed. Also, assume that the real machine position is 99.990mm. In this case, the following value is defined as the compensation amount used at the +100mm position:

$(100000 - 99990) \times 2 = 20$ pulses

The resultant value is defined as the compensation amount. Assume that the real machine position resulting when feed to the -100mm position is executed, is -99.990mm. In this case, the following value is defined as the compensation amount used at the -100mm position:

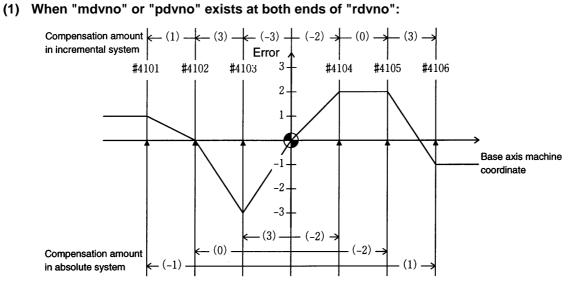
 $(-100000 - (-99990)) \times 2 = -20$ pulses


(2) Incremental system

The following figure (left) contains a machine position that is placed in the positive direction with respect to the reference point. Assume that feed from division n-1 to n (division interval) is executed. In this case, the following value is defined as the compensation amount:

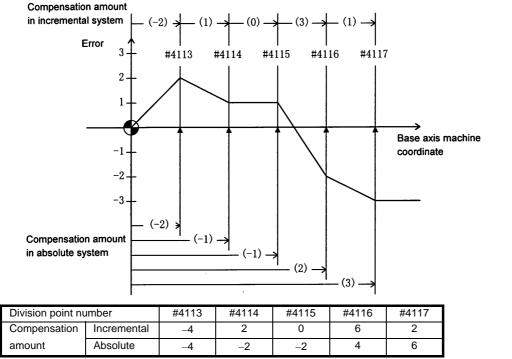
(Division interval – Actual movement distance) × 2 (Unit of output)

The following figure (right) contains a machine position that is placed in the negative direction with respect to the reference point. Assume that feed from division point n+1 to n by the division interval is executed. In this case, the following value is defined as the compensation amount:


(Division interval + Actual movement distance) \times 2 (Unit of output)

Unit : Unit of output Range : -128 to 127

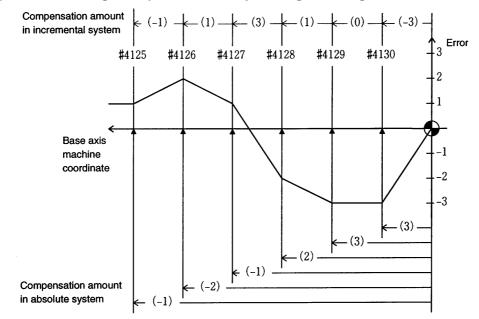
(Note) The unit of output is used as the unit of setting. The actual unit of compensation pulses depends on the compensation scale factor.


9.3 Example in Using a Linear Axis as the Base Axis

Division point nu	umber	#4101	#4102	#4103	#4104	#4105	#4106	rdvno	4103
Specified machine position		-300.000	-200.000	-100.000	100.000	200.000	300.000	mdvno	4101
Real machine pe	Real machine position		-200.000	-100.003	100.002	200.002	299.999	pdvno	4106
Compensation	Incremental	2	6	-6	-4	0	6	SC	1
amount	Absolute	-2	0	6	-4	-4	2	spcdv	100000

If the setting range (mdvno to "pdvno") is exceeded, the compensation will be based on compensation amount at mdvno or "pdvno".

(2) When the range compensated is only the positive range:

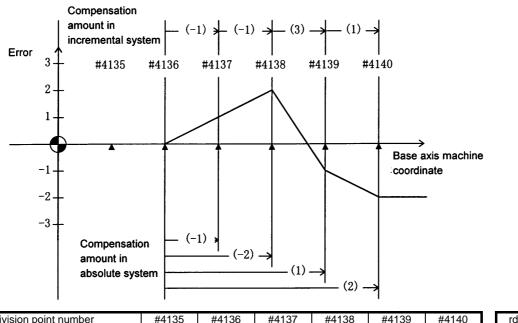


 rdvno
 4112

 mdvno
 4113

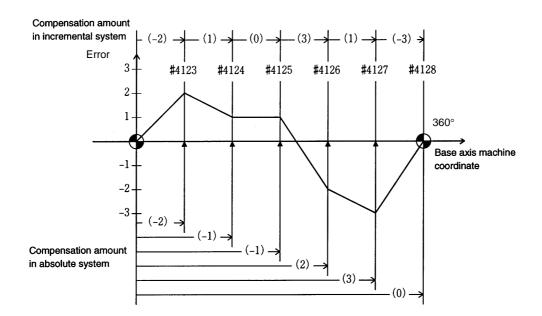
 pdvno
 4117

If the machine position exceeds "pdvno", the compensation will be based on the compensation amount at "pdvno". If the machine position is negative in this case, no compensation will be executed.



(3)	When the rang	e compensated is	only the negative range:
· · · /			end and the game of an get

Division point number		#4125	#4126	#4127	#4128	#4129	#4130	rdvno	4130
Compensation	Incremental	-2	2	6	2	0	-6	mdvno	4125
amount	Absolute	-2	-4	-2	4	6	6	pdvno	4130


If the machine position exceeds "mdvno", the compensation will be based on compensation amount at "mdvno".

(4) When compensation is executed in a range that contains no reference point:

Division point number		#4135	#4136	#4137	#4138	#4139	#4140	rdvno	4134
Compensation	Incremental			-2	-2	6	2	mdvno	4136
amount	Absolute			-2	-4	2	4	pdvno	4140

In this case, the compensation is executed in the range from "mdvno" to "pdvno". This setting rule applies also when the compensation is executed in a range which contains negative machine positions and no reference point.

9.4 Example in Using a Rotation Axis as the Base Axis

Division point number		#4123	#4124	#4125	#4126	#4127	#4128	rdvno	4122
Compensation	Incremental	-4	2	0	6	2	-6	mdvno	4123
amount	Absolute	-4	-2	-2	4	6	0	pdvno	4128

In this case, the sum of the compensation amounts set according to the incremental system is always 0. For the absolute system, the compensation amount at the terminal point (360 degrees) is always 0.

10. PLC Constants

10.1 PLC Timer

#	PLC device	ltem	Details	Setting range
6000	T000	10ms adding	Set the time for the timer used in the PLC	0 to 32767 (×10ms)
		timer <10ms>	program (ladder).	
			(Note) This setting value is valid when	
			parameter "#6449 bit0" in the	
			following "[BIT SELECT]" is set	
6015	T015		to "0".	
6016	T016	100ms adding	Set the time for the timer used in the PLC	0 to 32767 (×100ms)
		timer <10ms>	program (ladder).	
			(Note) This setting value is valid when	
			parameter "#6449 bit0" in the	
			following "[BIT SELECT]" is set	
6095	T095		to "0".	
6096	T096	100ms	Set the time for the timer used in the PLC	0 to 32767 (×100ms)
		cumulative	program (ladder).	
		timer	(Note) This setting value is valid when	
		<100ms INC>	parameter "#6449 bit0" in the	
			following "[BIT SELECT]" is set	
6103	T103		to "0".	

(SETUP PARAM 6 1/6) to (SETUP PARAM 6 2/6)

10.2 PLC Counter

(SETUP PARAM 6. 3/6)

#	PLC device	ltem	Details	Setting range
6200	C000	Counter	Set the time for the counter used in the	0 to 32767
			PLC program (ladder).	
			(Note) This setting value is valid when	
			parameter "#6449 bit1" in the	
			following "[BIT SELECT]" is set	
6223	C023		to "0".	

10.3 PLC Constants

#	PLC device	Item	Details	Setting range
6301	R4500,4501	PLC constant	Set the value to be set in the data type R	-99999999
			register used in the PLC program	to 99999999
			(ladder).	
			Even if the data is set in the R register	
			that corresponds to the PLC side when	
			this parameter is displayed, the screen	
	l		will not change. Enter a different screen	
6348	R4594,4595		once, and then select this screen again.	
			Note that some parameters have limited	
			uses.	
6325		Check timer of	Reserved for the system.	0 to
		input signal for	Used for only C64T.	32767(X100ms)
		safety		Standard: 2
6326		Check timer of		Set "0" for
		output signal for		C6/C64.
		safety		

(SETUP PARAM 6. 4/6)

10.4 PLC Bit Selection

#	PLC device	Item	Details	Sotting range
				Setting range
6401 6402	R4600-Low R4600-High	Bit selection	This is the bit type parameter used in the PLC program (ladder). Even if the data is set in the R register that corresponds to the PLC side when this parameter is displayed, the screen will not change. Enter a different screen once, and then select this screen again. Note that some parameters have limited uses.	0: OFF 1: ON
6495	R4647-Low			
6496	R4647-High			
6413		bit0 Dual monitoring interruption	Reserved for the system. Used for only C64T.	0/1 Standard: 0
6449	_	bit6 Communication terminal overheat detected	Designate whether to detect the communication terminal overheat alarm or not. 0: Detects the overheat alarm. 1: Does not detect the overheat alarm.	0: Detect 1: Not detect
		bit7 Control unit overheat detected	Designate whether to detect the control unit overheat alarm or not. 0: Detects the overheat alarm. 1: Does not detect the overheat alarm.	0: Detect 1: Not detect
6454		bit0 Macro interface for respective part systems	Designate whether to use the macro interface for respective part systems or not. 0: Conventional macro interface common to part systems. 1: Available to respective part systems.	0/1
6457		bit0,1 High-speed input specification	bit0: High-speed input from R54. bit1: High-speed input from R55. Note that this is used for only C64T.	bit0: 0/1 bit1: 0/1
6458		bit0,1 High-speed output specification	bit0: High-speed output to R56 bit1: High-speed output to R57 Note that this is used for only C64T.	bit0: 0/1 bit1: 0/1

(SETUP PARAM 6. 5/6) to (SETUP PARAM 6. 6/6)

When setting the parameter (#6449/bit6,7) not to check the overheat, the control unit and the communication terminal may not be controlled because of overheat.

In such case, axis runaway may cause a machine breakage, an accident resulting in injury or death, or device breakage.

To prevent the serious results, ordinarily set the parameters so that the overheat check is valid.

	Symbol name	Symbol 7 6		5 4		3	2	1	0
0	#6449 R2924 L	NC card Controller thermal alarm disable	Setting display unit thermal alarm disable	-		Counter C retention	Integrating timer T retention	PLC counter program on	PLC timer program on
1	#6450 R2924 H			Alarm/ operator change	Full screen display of message	-	Operator message on	1 0 R F system system	Alarm message on
2	#6451 R2925 L	-	-	-			-	-	1 0 F0 APLC screen release
3	#6452 R2925 H	-		-		Counter (fixed) retention	Integrating timer (fixed) retention		-
4	#6453 R2926 L	-	-	-	-	-		Message language change code	
5	#6454 R2926 H								Macro I/F for respective par system
6	#6455 R2927 L	-	-	-	-	-	-	-	-
7	#6456 R2927 H	-	-	-	-	-	-	-	-
8	#6457 R2928 L		High-speed input specification 1 (Note4)						
9	#6458 R2928 H		High-speed input specification 2						
A	#6459 R2929 L		High-speed input specification 3 (Spare)						
в	#6460 R2929 H		High-speed input specification 4 (Spare)						
с	#6461 R2930 L		High-speed	output specific	cation 1 (No	te4)			
D	#6462 R2930 H		High-speed	output specifie	cation 2				
E	#6463 R2931 L		High-speed	output specific	cation 3 (S	pare)			
F	#6464 R2931 H		High-speed	output specifi	cation 4 (S	pare)			

Table: "Contents of bit selection parameters #6449 to #6496"

(Note 1) Be sure to set the bits indicated - and blanks to 0.

(Note 2) Parameters #6481 to #6496 are reserved for debugging by Mitsubishi.

(Note 3) High-speed input specification is valid for only the devices allocated to remote I/O. As for the devices allocated to the input signals from network such as HR863 Q-bus bridge or H865 CC-Link, high-speed input specification is not applied to.

(Note 4) When using C64T system, these parameters are used as follows;

	0	
#6457	bit0	High-speed input specification from R54.
	bit1	High-speed input specification from R55.
#6458	bit0	High-speed output specification to R56.
	bit1	High-speed output specification to R57.

	Symbol name	7	6	5	4	3	2	1	0
0	(#6465 R2932 L	-	-	-	-	-	-	-	-
1	#6466 R2932 H	-	-	-	-	-	-	-	-
2	(#6467 R2933 L	-	-	-	-	-	-	-	-
3	#6468 R2933 H								
4	(#6469 R2934 L			Standard PLC parameter				-	NC alarm output disable
5	#6470 R2934 H								
6	(#6471 R2935 L	-	-	-	-	-	-	-	-
7	#6472 R2935 H	-	-	-	-	-	-	-	-
8	(#6473 R2936 L	-							-
9	#6474 R2936 H								
A	(#6475 R2937 L								
в	#6476 R2937 H								
с	(#6477 R2938 L								
D	#6478 R2938 H								
Е	(#6479 R2939 L								
F	#6480 R2939 H								

(Note 1) Be sure to set the bits indicated - and blanks to 0.

(Note 2) Parameters #6481 to #6496 are reserved for debugging by Mitsubishi.

11. Macro List

#	ltem	Details	Setting range (unit)
7001	M [01]	<code></code>	1 to 9999
to	to	Set the M code used for calling out the macro with the M	
7091	M [10]	command.	
		This is valid when "#1195 Mmac" is set to 1.	
7002		<type></type>	0 to 3
to		Set the macro call out type.	
7092		0 M98 P $\Delta\Delta\Delta\Delta$; and equivalent value call	
		1 G65 P $\Delta\Delta\Delta\Delta$; and equivalent value call	
		$\begin{array}{c c} 2 & G66 \ P \Delta \Delta \Delta \Delta; \text{ and equivalent value call} \\ \hline 3 & G66.1 \ P \Delta \Delta \Delta \Delta; \text{ and equivalent value call} \\ \end{array}$	
		3 G66.1 ΡΔΔΔΔ; and equivalent value call others M98 ΡΔΔΔΔ; and equivalent value call	
7003		<program no.=""></program>	1 to 99999999
to		Set the No. of the program to be called out.	
7093	Moment	Cat the type and presser No. for when calling out the mas	re with the Ord
	M2mac	Set the type and program No. for when calling out the mac miscellaneous command. The macro will be called out with	
		address command when "#1198 M2mac" is set to 1.	
7102		<pre></pre>	0 to 3
7102		Same as the M call macro.	0105
7103		<program no.=""></program>	0 to 99999999
1100		Same as the M call macro.	
7201	G [01]	<code></code>	1 to 255
to	to	Set the G code to be used when calling the macro with a G	
7291	G [10]	command. Do not set a G code used in the system.	
7202		<type></type>	0 to 3
to		Same as the M call macro.	
7292			
7203		<program no.=""></program>	1 to 99999999
to		Same as the M call macro.	
7293	-		
	Smac	Set the type and program No. for when calling the macro w	vith an S command.
7000		This is valid when "#1196 Smac" is set to 1.	0.1.0
7302		<type></type>	0 to 3
7202		Same as the M call macro. <program no.=""></program>	1 to 0000000
7303		<program no.=""> Same as the M call macro.</program>	1 to 99999999
	Tmac	Same as the Mican macro. Set the type and program No. for when calling the macro w	<i>i</i> ith a T command
	THAC	This is valid when "#1197 Tmac" is set to 1.	
7312		<pre></pre>	0 to 3
1012		Same as the M call macro.	
7313		<program no.=""></program>	0 to 99999999
		Same as the M call macro.	
27000	Nmac	Not used.	0
27001	N [0]	<code></code>	0
to	to	Not used.	
27071	N [08]		
27002		<program no.=""></program>	0
to		Not used.	
27072			

12. Position Switch

12.1 Outline of Function

The position switch (PSW) is used as an imaginary dog switch by assigning an axis name and coordinate values that indicate the imaginary dog position to be used instead of the dog switch on the machine axis. When the machine reaches the imaginary dog position, a signal is output to the PLC interface. This imaginary dog switch is called the position switch (PSW).

No.		ltem	Details	Setting range (unit)
7500	Pcheck	High-speed switching of position switch	 Specify whether to perform position switch area checking at high speeds. 0: Does not perform position switch area checking at high speed (do it the same as before). 1: Performs position switch area checking at high speed. 	0/1
75*1	<axis></axis>	Axis name	Specify the name of the axis for which a position switch is provided.	X, Y, Z, U, V, W, A, B, or C axis address
75*2	<dog1></dog1>	Imaginary dog position 1	When the machine enters the range between imaginary dog positions 1 and 2, a signal is output to the PLC.	-999999.999 to 99999.999 (0.001mm)
75*3	<dog2></dog2>	Imaginary dog position 2	Part system 1 device X 660 Part system 2 device Y 6E0	
75*4	<check></check>	Selection of area check method	 When position switch area checking at high speed is selected, specify the mode of area checking, i.e., whether to use the command type machine position or detector feedback position, for each position switch point. 0: Use the command type machine position for position as the machine position for position switch area checking. 1: Use the detector feedback position as the machine position switch area checking. 1: Use the detector feedback position switch area checking. 1: Use the detector feedback position switch area checking. (Note) This parameter is valid only when 1 set in "#7500 Pcheck." 	0/1

	<axis></axis>	<dog1></dog1>	<dog2></dog2>	1st part system	2nd part system	3rd part system	4th part system	5th part system	6th part system	7th part system
PSW1	7501	7502	7503	X660	X6E0	X760	X7E0	X860	X8E0	X960
PSW2	7511	7512	7513	X661	X6E1	X761	X7E1	X861	X8E1	X961
PSW3	7521	7522	7523	X662	X6E2	X762	X7E2	X862	X8E2	X962
PSW4	7531	7532	7533	X663	X6E3	X763	X7E3	X863	X8E3	X963
PSW5	7541	7542	7543	X664	X6E4	X764	X7E4	X864	X8E4	X964
PSW6	7551	7552	7553	X665	X6E5	X765	X7E5	X865	X8E5	X965
PSW7	7561	7562	7563	X666	X6E6	X766	X7E6	X866	X8E6	X966
PSW8	7571	7572	7573	X667	X6E7	X767	X7E7	X867	X8E7	X967
PSW9	7581	7582	7583	X670	X6F0	X770	X7F0	X870	X8F0	X970
PSW10	7591	7592	7593	X671	X6F1	X771	X7F1	X871	X8F1	X971
PSW11	7601	7602	7603	X672	X6F2	X772	X7F2	X872	X8F2	X972
PSW12	7611	7612	7613	X673	X6F3	X773	X7F3	X873	X8F3	X973
PSW13	7621	7622	7623	X674	X6F4	X774	X7F4	X874	X8F4	X974
PSW14	7631	7632	7633	X675	X6F5	X775	X7F5	X875	X8F5	X975
PSW15	7641	7642	7643	X676	X6F6	X776	X7F6	X876	X8F6	X976
PSW16	7651	7652	7653	X677	X6F7	X777	X7F7	X877	X8F7	X977

Position switch numbers of PSW1 to PSW16 and signal devices

Instead of the dog switch provided on the machine axis, the coordinate values indicating imaginary dog positions (dog1 and dog2) on the coordinate axis of the axis name preset with axis are set with the position switches (PSW1 - PSW16). When the machine reaches the position, the signal is output to the device corresponding to the PLC interface.

Example of settings of dog1 and dog2 and operation

Setting of dog1 and dog2	Operation	Description	Basic machine coordinate	
dog1 < dog2	dog1 dog2	A signal is output between dog1 and dog2.	system zero point	
dog1 > dog2	dog2 dog1	A signal is output between dog1 and dog2.	dog PSW	
dog1 = dog2		If dog1 equals dog2, the dog1	dog1 width	
	$ \log 1 = \log 2$	position triggers a signal.	dog2	

Setting of dog1 and dog2	Operation	Description
dog1 < dog2	dog2 dog1 (Example) dog1 = 30.000 dog2 = 330.000	A signal is output between dog1 and dog2.
	dog1 dog2 (Example) dog1 = -30.000 dog2 = 30.000	A signal is also output when dog1 is negative.
dog1 > dog2	dog1 dog2 (Example) dog1 = 330.000 dog2 = 30.000	A signal is output between dog2 and dog1.
dog1 – dog2 ≥ 360	dog2 dog1 (Example) dog1 = 30.000 dog2 = 390.000	A signal is kept output when the difference between dog1 and dog2 exceeds 360 degrees.

Rotary axis

12.2 Canceling the Position Switch

To cancel the position switch, enter the number (#75*1) of the position switch to be canceled in # () of the setting area, enter a slash "/" in DATA (), then press the <u>INPUT</u> key. This deletes the axis name for the specified position switch, thus invalidating the position switch.

The data specified for <dog1> and <dog2> are still stored in memory. To validate the position switch again, therefore, it is enough to specify the axis name only.

13. Indexing Axis Parameters

(Note) These parameters are used only with the G64T.

#	lte	em	Details	Setting range (unit)
26251	METHOD		0/1/2/3	
			Select the index command method. 0: Matrix command	
			1: Single command	
			2: BCD command (without parity)	
00050		1.110	3: BCD command (with parity)	o
20232	26252 AUX bit0		 Select the rotary axis' control method. 0: Non-endless method Positioning is carried out without extending over 0.000°. Thus, the rotation direction is automatically determined according to the command. 1: Endless method Positioning is carried out with the designated rotation direction on a chart out 	0 to F Set as a HEX value.
		1.114	rotation direction or a short cut.	
	bit1		Validates addition/subtraction with the index position command input. 0: Addition/subtraction invalid 1: Addition/subtraction valid	
	bit2		Select the valid width of external data input/output function's IN data.	
			0: 16 bits (IN0 to IN15) 1: 24 bits (IN0 to IN23)	
		bit3	When the "request fixed" signal is ON, the parity of the IN data equivalent to the valid width set in #26252 bit2 is checked. 0: Does not check parity 1: Checks parity	
		bit4	 Select the external positioning stop mode. 0: Retraction stop mode After decelerating to a stop, the axis is retracted to the position where the signal was input (point where deceleration started). Then the index position compensation amount is calculated and set. 1: Deceleration stop mode After decelerating to a stop, the index position compensation amount is calculated and set at 	
			that point.	
26253	JOG CLAM	P SPEED 1	Set JOG speed 1 or indexing speed clamp 1.	1 to 1000000
	JOG CLAM		Set JOG speed 2 or indexing speed clamp 2.	mm/min, °/min)
26255	JOG CLAM	P SPEED 3	Set JOG speed 3 or indexing speed clamp 3.	. ,

#	ltem	Details	Setting range (unit)
26256	CURRENT LIMIT	Set current limit value when current limit value command signal is ON.	0 to 100 (%)
26257	OFFSET	Set the indexing position compensation amount.	-999.999 to 999.999 (mm)
26258	OFFSET LIMIT	If the indexing position compensation amount exceeds this value, the "index position offset MAX reached" signal (M:Y18E, L:Y100) will be output.	0 to 999.999 (mm)
26259	DETECTION WIDTH	Set the tolerable width for outputting the in-position signal when indexing is completed.	0 to 999.999 (mm)
26260	CURRENT LIMIT 2	Set current limit value when current limit value command 2 signal is ON.	0 to 100 (%)
26261	CURRENT LIMIT 3	Set current limit value when current limit value command 3 signal is ON.	0 to 100 (%)

14. Indexing Axis Position Switch

14.1 Outline of Function

(Note) These parameters are used only with the G64T.

The position switch (PSW) is used as an imaginary dog switch by assigning an axis name and coordinate values that indicate the imaginary dog position to be used instead of the dog switch on the machine axis. When the machine reaches the imaginary dog position, a signal is output to the PLC interface. This imaginary dog switch is called the position switch (PSW). The position switch for the indexing axis is set on this screen.

Setting range No. Item Details (unit) The PLC position output signal turns ON -99999.999 Imaginary dog 27701 <dog1> position 1 when the machine reaches the range to 99999.999 between the imaginary dog position 1 and (0.001 mm)Imaginary dog 27702 <dog2> position 2 imaginary dog position 2. : Imaginary dog 27731 <dog1> position 1 Imaginary dog 27732 <dog2> position 2

Position switch numbers of PSW1 to PSW16 and signal devices

	<dog1></dog1>	<dog2></dog2>	1st axis device	2nd axis device	3rd axis device	4th axis device
PSW1	27701	27702	R3561/bit0	R3566/bit0	R3571/bit0	R3576/bit0
PSW2	27703	27704	R3561/bit1	R3566/bit1	R3571/bit1	R3576/bit1
PSW3	27705	27706	R3561/bit2	R3566/bit2	R3571/bit2	R3576/bit2
PSW4	27707	27708	R3561/bit3	R3566/bit3	R3571/bit3	R3576/bit3
PSW5	27709	27710	R3561/bit4	R3566/bit4	R3571/bit4	R3576/bit4
PSW6	27711	27712	R3561/bit5	R3566/bit5	R3571/bit5	R3576/bit5
PSW7	27713	27714	R3561/bit6	R3566/bit6	R3571/bit6	R3576/bit6
PSW8	27715	27716	R3561/bit7	R3566/bit7	R3571/bit7	R3576/bit7
PSW9	27717	27718	R3561/bit8	R3566/bit8	R3571/bit8	R3576/bit8
PSW10	27719	27720	R3561/bit9	R3566/bit9	R3571/bit9	R3576/bit9
PSW11	27721	27722	R3561/bitA	R3566/bitA	R3571/bitA	R3576/bitA
PSW12	27723	27724	R3561/bitB	R3566/bitB	R3571/bitB	R3576/bitB
PSW13	27725	27726	R3561/bitC	R3566/bitC	R3571/bitC	R3576/bitC
PSW14	27727	27728	R3561/bitD	R3566/bitD	R3571/bitD	R3576/bitD
PSW15	27729	27730	R3561/bitE	R3566/bitE	R3571/bitE	R3576/bitE
PSW16	27731	27732	R3561/bitF	R3566/bitF	R3571/bitF	R3576/bitF

(Note) If the imaginary dog positions 1 and 2 are both set to "0", the signal will not be output to the PLC interface.

15. Indexing Axis Commands

(Note) These parameters are used only with the G64T.

ltem	Details	Setting range (unit)
POSITION	Command the indexing position.	-99999.999
		to 99999.999
		(0.001mm/0.001°,
		0.0001mm/0.0001°)
SPEED	Set the indexing speed.	0 to 999999
		(mm/min, °/min)
INPOS	Set the in-position width, which indicates the output	0 to 99999.999
	range of the in-position signal output when	(0.001mm/0.001°,
	positioning is completed.	0.0001mm/0.0001°)
FLAG	0: Normal indexing position command	0/1/2
	1: Position command valid for external positioning	
	2: Indexing command compensation valid	

100 sets can be set for each axis.

When changing the axis, set the axis No. after "X" in the first setting area, such as # (X2), and then press INPUT. Axis No. "1" corresponds to the 1st peripheral axis.

(Example 1)	To change to 2nd peripheral axis	# (X2)	INPUT
(Example 2)	To change to 4th peripheral axis	#(X4)	INPUT

16. Auxiliary Axis Parameters Turn the NC power OFF after setting parameters indicated with a (PR) in the table. The setting will be validated after the power is turned ON again.

No.		Name		Details		Setting range	Default value
1 (PR)	MSR	Motor series	Set the motor series by the system when set.		utomatically judged It value (0000) is	0000 to FFFF (hexadecimal)	0000
2 (PR)	RTY	Regeneration option type	Set the regenerati	ve resistor t (Default va Setting value 0 1 2 3 4 5 6 7~F	,	Details built-in resistor (1	
3 (PR)	PC1	Motor side gear ratio (machine rotation ratio)	Set the No. of gear teeth on the motor side and the No. of gear teeth on the machine side as an integer reduced to its lowest terms. Set the total gear ratio if there are multiple gear levels. For rotation axes, set the No. of motor rotation speed per machine rotation.			1 to 32767	1
4 (PR)	PC2	Machine side gear ratio (motor rotation ratio)				1 to 32767	1
5 (PR)	PIT	Feed pitch	Set 360 (default value) for rotation axes. Set the feed lead for linear axes.			1 to 32767 (° or mm)	360
6	INP	In-position detection width	In-position is deter becomes this setti			1 to 32767 (1/1000° or μm)	50

No.		Name	Details			Setting range	Default value	
7	ATU	Auto-tuning	Set the adjustment of the auto-tuning. Do not set values without a description					
) 2	(Default se	etting value)		
					Setting value	ſ	Details	
					1	Low response (Ic which easily vibrate	e)	loads
					2	Standard setting va		
					3	Standard setting va		
					4	Standard setting va		
					5	High response (hi which do not easily		loads
					Setting value		Details	
				L	0	Standard		
					2	Large friction amou gain slightly lower)	on loop	
					Setting value	Γ	Details	
					0	Only auto-tuning P	G2, VG2, VIC, an	d GD2.
					1	Auto-tuning PG1, PG2, VG1, VG2, VIC, and GD2 (total gain). (Standard setting)		
					2	No auto-tuning.		
0	DO4	Desition lass				.	4 += 4000 (4/=)	70
8	PG1	Position loop gain 1	Determine the position comm	e trac	king ability	he model loop. regarding the	4 to 1000 (1/s)	70
9			(Not used.)					0
10	EMGt	Deceleration control time constant	(Aspeed1). Fo	or no	rmal rapid ti	a the clamp speed raverse, set the n/deceleration time	0 to 32768 (ms)	500
11			(Not used.)					0
12			(Not used.)					0
13	MBR	Vertical axis drop prevention time	servo OFF co	mma ne ar	ind. Increas	s delayed during e the setting by inimum value where	0 to 1000 (ms)	100

No.		Name		Det	tails			Set	tting ra	ange		Default value
14	NCH	Notch filter No.	Set the frequency Do not set values					ppress	ion filte	er.		
			Setting value	0	1	2	3	4	5	6		7
			Frequency (Hz)	No start	1125	563	375	282	225	18	8	161
15			(Not used.)								0	
16	JI⊤	Jitter compensation	Set the No. of ignored jitter compensation pulses description.						not set	value	s wi	thout a
										3		
			Number of ignore pulses No start 1							3		
17			(Not used.)				0					
18			(Not used.)	(Not used.)							0	
19	PG2	Position loop gain 2	Set the position lo Determine the po external disturbar	sition r				1 to	500 (1	25		
20	VG1	Speed loop gain 1	Set the speed loo Determine the tra speed commands	cking a				20 t	o 5000	(1/s)	12	00
21	VG2	Speed loop gain 2	Set the speed loo Determine the spe disturbance.						o 8000	(1/s)	60	0
22	VIC	Speed integral compensation	Determine the characteristic low-frequency reg		istics of	the spe	eed	1 to	1000 ((ms)	20	
23	VDC	Speed differential compensation	PI control normally results from a default value of 0 to 1000 1000. Adjust the overshoot amount by lowering in increments of 20.								10	00
24	DG2	Load inertia ratio	Set the load inerti	a ratio	for the r	notor ir	nertia.	0.0 (fold	to 50.0 d))	2.0)
25			(Not used.)								0	
30 (PR)	MTY	Motor type	Set the motor type. This is automatically judged by the system when the default value (0000) is set.								00	00

No.		Name			Details		Setting range	Default value		
50	MD1	D/A output channel 1 data No.			a data to be output on ault setting value)	D/A outpu	t channel 1.			
				Setting value	Details		Magnification			
				0	Speed feedback (with sign)	Maximur	m rotation speed	= 8V		
				1	Current feedback (with sign)	Maximur	m current (torque	e) = 8V		
				2	Speed feedback (without sign)	Maximur	m rotation speed	= 8V		
				3	Maximur	m current (torque	e) = 8V			
				4	(without sign) Current command	Maximur	m current (torque	e) = 8V		
				5	[degrees/min] = [·]	10V				
				6	Position droop 1 (1/1)	2048 [pulse] = 10V				
				7	Position droop 2 (1/4)	8192 [pu				
				8	Position droop 3 (1/16)	32768 [p	oulse] = 10V			
				9	Position droop 4 (1/32)	65536 [p	oulse] = 10V			
				А	Position droop 5 (1/64)	131072	[pulse] = 10V			
51	MO1	D/A output channel 1 output offset	Set this va channel 1		n the zero level of D/A iitable.	output	–999 to 999 (mV)	0		
52			(Not used	.)				0		
53	MD2	D/A output channel 2 data No.	Set the No channel 2 The descr		0000 to FFFF (hexadecimal)	0000				
54	MO2	D/A output channel 2 output offset	Set this va channel 2		n the zero level of D/A iitable.	output	–999 to 999 (mV)	0		
55			(Not used	.)				0		
100 (PR)	station	No. of indexing stations	Set the No is express – 1.		2 to 360	2				

No.		Name					۵	Det	ails	5						s	Sett	in	g ra	nge	•	Defaul value	
101 (PR)	Cont1	Control parameter 1	nis is a alues.	a HE	EX s	ettir	ng I	par	am	eter	. Se	et	bits	with	nout	a de	esc	rip	otion	to t	heir	default	t
			bit		F	Е		C	С	В	Α		9	8	7	6	5	5	4	3	2	1 C)
			Defa valu		0	0	(0	0	0	0		1	0	0	0	C)	0	0	0	0 0)
			bit		Me	ean	ing	wł	nen	"0"	is s	et				Mea	anir	ng	whe	en "1	" is	set	
			0																				
			1		gh-sp er es										Dog- point							zero	
			2																				
			3 4																				
			5																				
			6																				_
			7 8	Re (+)	fere	nce	ро	oint	ret	urn	dire	ct	ion		Refe	ren	ce l	ooi	int r	etur	n di	rection	
			9	Ro	tatio erati									/ 1			-	ec	tion	in t	he s	hortcut	т. Х
			А		chin orig				osi	tion	bec	0	me		Elect origii			ero	o po	int b	eco	mes the	э
			В																				
			C D	Co val	ordii id	nate	e ze	ero	po	int c	rea	tic	n		Zero supp						d at	power	
			E	Ro coi	tatio ntrol ortcu	sig	nal	(D	IR)				'n		Rota	tion	dir	ec	tion	in t		andom rection	
			F	Sto	oppe ectio	r di				pos	sitio	nir	ng									sign nount	

No.	N	ame					De	etail	s						Se	ettir	ng r	ang	e		Defa valu	
102 (PR)	Cont2	Control parameter 2		is is a ues.	HEX	settir	ig p	araı	mete	er. S	Set	bits	with	out	a de	escr	riptio	on t	o th	eir	defa	ult
				bit	F	E	D) (E	3	А	9	8	7	6	5	4	1	3	2	1	0
				Defaul value		0	0	0) ()	0	0	0	1	0	0	C)	0	1	1	0
				bit	Ν	/leani	ng	whe	en "0	" is	s se	t			Mea	nin	g w	hen	"1"	' is :	set	
				0 1 E	Error	not co	orre	octer	d at s	ser	vo (OFF		rror	cor	rect	ed a	ats	ervo	$\frac{1}{10}$	FF	
					inea		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	/0100	<u> </u>	501	10			lotat								
					Statio			mer	nt dir	ect	ion	CW		Static					dire	ectio	on C	CW
					<u>Jnifor</u>						•			lon-								
					DO ch 2-wire									00 c								
					ncren						Jan			bso								
				8										· · · · · · · · · · · · · · · · · · ·								
				9																		
				A B									_									
				C																		
				D																		
				E																		
				F																		
103 (PR)	EmgCont	Emergency stop control		is is a ues.	HEX	settir	ig p	araı	mete	er. S	Set	bits	with	out	a de	escr	iptio	on t	o th	eir	defa	ult
				bit	F	E	D	С	В	Α	(9 8	8 7	7 (6	5	4	3	2	1	C)
			11	efault /alue	0	0	0	0	0	0	() (0 () ()	0	0	0	0	C) 1	
				bit	M	eanir	na v	wher	า "0"	is	set			Me	anin	a w	/her	ר" ו	' is	set		
					Exter									terna alid	al er	ner	gen	icy :	stop			
					Dyna emer				op a	ıt			De	cele	ratio	on d	cont			o at		
				2	NC b valid				cy si	ор	inp	out	NC	bus bus				cy s	top	inp	ut	
				3	NC b valid	us en	ner	geno	cy st	ор	out	put	NC	bus bus	sem	nerg	geno	cy s	top	out	put	
				4																		
				5																		
				6 7																		
			$ \vdash$	8																		
				9																		
				A																		
			-	B C																		
				D																		
			[Е																		
			L	F																		

No.	Na	ame	Details	Setting range	Default value
104 (PR)	tleng	Linear axis stroke length	Set the movement stroke length for linear axes. This is meaningless when setting non-uniform assignments or commanding random positions.	0.001 to 99999.999 (mm)	100.000
110	ZRNspeed	Reference point return speed	Set the clamp value of the feedrate when a reference point return is carried out. The feedrate becomes the manual operation speed of the parameter group selected at that time, but it is clamped by this parameter setting value.	1 to 100000 (°/min or mm/min)	1000
111	ZRNcreep	Reference point return creep speed	Set the approach speed to the reference point after dog detection during a reference point return.	1 to 65535 (°/min or mm/min)	200
112	grid mask	Grid mask	Set the amount that the dog is artificially extended. Set 1/2 the grid spacing as a standard.	0 to 65536 (1/1000° or μm)	0
113 (PR)	grspc	Grid spacing	Divide the grid spacing that is the conventional motor rotation movement amount into 2, 4, 8, or 16 divisions.	0 to 4 (1/2 ⁿ division)	0
114	ZRNshift	Reference point shift amount	Set the shift amount in a dog-type reference point return from the electric zero point determined on the grid to the reference point.	0 to 65536 (1/1000° or μm)	0
115	ST. ofset	Station offset	Set the distance (offset) from the reference point to station 1.	-999999.999 to 99999.999 (° or mm)	0.000
116 (PR)	ABS base	Absolute position zero point	When movement of the machine coordinate zero point from the origin point is required during absolute position initializing, set that movement amount.	-999999.999 to 99999.999 (° or mm)	0.000
117	Limit (+)	Soft limit (+)	Commands in the plus direction that exceed this setting value are not possible. If the machine is in a position exceeding the setting value, commands in the minus direction are possible. The soft limit function will not operate if Limit (+) and Limit (-) are set to the same value.	–999999.999 to 99999.999 (mm)	1.000
118	Limit (–)	Soft limit (–)	Commands in the minus direction that exceed this value are not possible. If the machine is in a position exceeding the setting value, commands in the plus direction are possible.	–999999.999 to 99999.999 (mm)	1.000

No.	N	lame						۵	Detai	s							S	etti	ng	rai	nge			ault lue
120	ABS Type	Absolute position detection		his para o descr				set	as a	hexa	ade	ci	mal	. Se	et th	e	de	faul	t va	lue	e for	bits	tha	t have
		parameter	IΓ	bit		F	Е	D) C	В	A		9	8	7		6	5	; 4	4	3	2	1	0
				Default value	t	0	0	0	0	0	0		0	0	0		0	C) (0	0	1	0	0
				r													4-							·
				bit		IVI	ean	ing	whe	n "U	IS	se	et			N	viea	anir	ig v	vne	en "1	[°] IS	set	
				0	Do	مام	ee-ti	Vn	e mei	hod	initi	al	izin	a	Do	a_1	tvr		hoth	000	l initi	əliz	ina	
				2	Me	cha		al s	stopp					y		giı	n p	oin			men			d
									ro po	int di	rec	tic	on (·	+)					ero	pc	oint c	lirec	tior	(—)
				4										.,		<u>.</u>		<u></u>	0.0					/
				5																				
				6																				
				7 8																				
				9																				
				Α																				
				В																				
				C D																				
				E																				
				F																				
123	ABS check	Absolute position power OFF tolerable movement value	n p s n if v T t	Set the v noveme ower O ystem. noveme the ma alue du he mov nis para	ent DFF The ent achi achi iring /em	for in e "/ exc ine g p nen eter	a m an a Abso ceed mov owe t am	abs olu led ves er C nou set	hine solute te po I (AB S mor S mor DFF. unt is to 0.1	that pos sition S)" s re tha not 000.	mov ition n po igna an t che	ve n ow al hi	ed d dete ver (will s se ked	urin ectio OFI turi ettin	on F n Ol ng	V	99 (°	or r	9.99 mm))			000	
130	backlash	Backlash compensa- tion amount	S	Set the t	oac	kla	sh c	con	npen	satio	n a	m	oun	ıt.					999 00°		μm)	0		
132			(Not use	ed.)																	0		
133			(Not use	ed.)																	0		
134			(Not use	ed.)																	0		
135			(Not use	ed.)																	0		

<	< Ope	ration	parameter	group	1	>
					_	

No.	N	lame	Details	Setting range	Default value
150	Aspeed1	Operation parameter group 1 Automatic operation speed	Set the feedrate during automatic operation when operation parameter group 1 is selected. This parameter is regarded as the clamp value for the automatic operation speeds and manual operation speeds of all operation groups. A speed exceeding Aspeed1 cannot be commanded, even if set in the parameters.	1 to 100000 (°/min or mm/min)	5000
151	Mspeed1	Operation parameter group 1 Manual operation speed	Set the feedrate during manual operation or JOG operation when operation parameter group 1 is selected.	1 to 100000 (°/min or mm/min)	2000
152	time1.1	Operation parameter group 1 Acceleration/ deceleration time constant 1	Set the linear acceleration/deceleration time for Aspeed 1(the operation parameter group 1 automatic operation speed (clamp speed)) when operation parameter group 1 is selected. When operating at speeds less than the clamp speed, the axis will linearly accelerate/decelerate at the inclination determined above. When this is set together with acceleration/deceleration time constant 2, S-shape acceleration/deceleration is carried out. In this case, set the acceleration/deceleration time of the linear part in this parameter.	1 to 9999 (ms)	100
153	time1.2	Operation parameter group 1 Acceleration/ deceleration time constant 2	Set this parameter when carrying out S-shape acceleration/deceleration. When S-shape acceleration/deceleration is carried out, set the total time of the non-linear parts. When "1" is set in this parameter, linear acceleration/deceleration is carried out. In the handle feed operation mode, this set value is regarded as the time constant for the linear acceleration/deceleration.	1 to 999 (ms)	1

No.	I	Name	Details	Setting range	Default value
154	TL1	Operation parameter group 1 Torque limit value	Set the motor output torque limit value when operation parameter group 1 is selected. At the default value, the torque is limited at the maximum torque of the motor specifications. Set the default value when torque limit is not especially required. In the stopper positioning operation mode, this becomes the torque limit value when positioning to the stopper starting coordinates.	1 to 500 (%)	500
155	OD1	Operation parameter group 1 Excessive error detection width	Set the excessive error detection width when operation parameter group 1 is selected. An alarm of excessive error (S03 0052) is detected when the position droop becomes larger than this setting value. In the stopper positioning operation mode, this becomes the excessive error detection width when positioning to the stopper starting coordinates.	0 to 32767 (° or mm)	100
156	just1	Operation parameter group 1 Set position output width	The signal indicating that the machine position is at any one of the stations is the set position reached (JST) signal. During automatic operation, the automatic set position reached (JSTA) signal is also output under the same conditions. Set the tolerable values at which these signals are output when operation parameter group 1 is selected. These signals turn OFF when the machine position is separated from the station by more than this value.	0.000 to 99999.999 (° or mm)	0.500
157	near1	Operation parameter group 1 Near set position output width	The signal indicating that the machine position is near any one of the station positions is the near set position (NEAR) signal. Set the tolerable value at which this signal is output when operation parameter group 1 is selected. This value is generally set wider than the set position output width. During operations, this is related to special commands when the station selection is "0".	0.000 to 99999.999 (° or mm)	1.000

< Ope	eration	parameter	group 2	>

No.	Ν	ame	Details	Setting range	Default value
158	Aspeed2	Operation parameter group 2 Automatic operation speed	Set the feedrate during automatic operation when operation parameter group 2 is selected.	1 to 100000 (°/min or mm/min)	5000
159	Mspeed2	Operation parameter group 2 Manual operation speed	Set the feedrate during manual operation or JOG operation when operation parameter group 2 is selected.	1 to 100000 (°/min or mm/min)	2000
160	time2.1	Operation parameter group 2 Acceleration/ deceleration time constant 1	Set the linear acceleration/deceleration time for the operation parameter group 1 automatic operation speed (clamp speed) when operation parameter group 2 is selected. When operating at speeds less than the clamp speed, the axis will linearly accelerate/decelerate at the inclination determined above. When this is set together with acceleration/deceleration time constant 2, S-shape acceleration/deceleration is carried out. In this case, set the acceleration/deceleration time of the linear part in this parameter.	1 to 9999 (ms)	100
161	time2.2	Operation parameter group 2 Acceleration/ deceleration time constant 2	Set this parameter when carrying out S-shape acceleration/deceleration. When S-shape acceleration/deceleration is carried out, set the total time of the non-linear parts. When 1 is set in this parameter, linear acceleration/deceleration is carried out. In the handle feed operation mode, this set value is regarded as the time constant for the linear acceleration/deceleration.	1 to 9999 (ms)	1

No.	N	ame	Details	Setting range	Default value
162	TL2	Operation parameter group 2 Torque limit value	Set the motor output torque limit value when operation parameter group 2 is selected. At the default value, the torque is limited at the maximum torque of the motor specifications. Set the default value when torque limit is not especially required. In the stopper positioning operation mode, this becomes the torque limit value during stopper operation.	1 to 500 (%)	500
163	OD2	Operation parameter group 2 Excessive error detection width	Set the excessive error detection width when operation parameter group 2 is selected. An excessive error alarm (S03 0052) is detected when the position droop becomes larger than this setting value. In the stopper positioning operation mode, this becomes the excessive error detection width during stopper operation.	0 to 32767 (° or mm)	100
164	just2	Operation parameter group 2 Set position output width	The signal indicating that the machine position is at any one of the stations is the set position reached (JST) signal. During automatic operation, the automatic set position reached (JSTA) signal is also output under the same conditions. Set the tolerable values at which these signals are output when operation parameter group 2 is selected. These signals turn OFF when the machine position is separated from the station by more than this value.	0.000 to 99999.999 (° or mm)	0.500
165	near2	Operation parameter group 2 Near set position output width	The signal indicating that the machine position is near any one of the station positions is the near set position (NEAR) signal. Set the tolerable values at which these signals are output when operation parameter group 2 is selected. These values are generally set wider than the set position output width. During operations, this is related to special commands when the station selection is "0".	0.000 to 99999.999 (° or mm)	1.000

< Operation parameter group 3 >

No.	Ν	ame	Details	Setting range	Default value
166	Aspeed3	Operation parameter group 3 Automatic operation speed	Set the feedrate during automatic operation when operation parameter group 3 is selected.	1 to 100000 (°/min or mm/min)	5000
167	Mspeed3	Operation parameter group 3 Manual operation speed	Set the feedrate during manual operation or JOG operation when operation parameter group 3 is selected.	1 to 100000 (°/min or mm/min)	2000
168	time3.1	Operation parameter group 3 Acceleration/ deceleration time constant 1	Set the linear acceleration/deceleration time for the operation parameter group 1 automatic operation speed (clamp speed) when operation parameter group 3 is selected. When operating at speeds less than the clamp speed, the axis will linearly accelerate/decelerate at the inclination determined above. When this is set together with acceleration/deceleration time constant 2, S-shape acceleration/deceleration is carried out. In this case, set the acceleration/deceleration time of the linear part in this parameter.		100
169	time3.2	Operation parameter group 3 Acceleration/ deceleration time constant 2	Set this parameter when carrying out S-shape acceleration/deceleration. When S-shape acceleration/deceleration is carried out, set the total time of the non-linear parts. When 1 is set in this parameter, linear acceleration/deceleration is carried out. In the handle feed operation mode, this set value is regarded as the time constant for the linear acceleration/deceleration	1 to 9999 (ms)	1

No.	N	ame	Details	Setting range	Default value
170	TL3	Operation parameter group 3 Torque limit value	Set the motor output torque limit value when operation parameter group 3 is selected. At the default value, the torque is limited at the maximum torque of the motor specifications. Set the default value when torque limit is not especially required. In the stopper positioning operation mode, this becomes the pressing torque limit value after completion of the positioning.	1 to 500 (%)	500
171	OD3	Operation parameter group 3 Excessive error detection width	Set the excessive error detection width when operation parameter group 3 is selected. An excessive error alarm (S03 0052) is detected when the position droop becomes larger than this setting value. In the stopper positioning operation mode, this becomes the excessive error detection width during pressing after completion of the positioning.	0 to 32767 (° or mm)	100
172	just3	Operation parameter group 3 Set position output width	The signal indicating that the machine position is at any one of the stations is the set position reached (JST) signal. During automatic operation, the automatic set position reached (JSTA) signal is also output under the same conditions. Set the tolerable values at which these signals are output when operation parameter group 3 is selected. These signals turn OFF when the machine position is separated from the station by more than this value.	0.000 to 99999.999 (° or mm)	0.500
173	near3	Operation parameter group 3 Near set position output width	The signal indicating that the machine position is near any one of the station positions is the near set position (NEAR) signal. Set the tolerable values at which these signals are output when operation parameter group 3 is selected. These values are generally set wider than the set position output width. During operations, this is related to special commands when the station selection is "0".	0.000 to 99999.999 (° or mm)	1.000

< Operation parameter group	4	>	•
-----------------------------	---	---	---

No.	N	ame	Details	Setting range	Default value
174	Aspeed4	Operation parameter group 4 Automatic operation speed	Set the feedrate during automatic operation when operation parameter group 4 is selected.	1 to 100000 (°/min or mm/min)	5000
175	Mspeed4	Operation parameter group 4 Manual operation speed	Set the feedrate during manual operation or JOG operation when operation parameter group 4 is selected.	1 to 100000 (°/min or mm/min)	2000
176	time4.1	Operation parameter group 4 Acceleration/ deceleration time constant 1	Set the linear acceleration/deceleration time for the operation parameter group 1 automatic operation speed (clamp speed) when operation parameter group 4 is selected. When operating at speeds less than the clamp speed, the axis will linearly accelerate/decelerate at the inclination determined above. When this is set together with acceleration/deceleration time constant 2, S-shape acceleration/deceleration is carried out. In this case, set the acceleration/deceleration time of the linear part in this parameter.	1 to 9999 (ms)	100
177	time4.2	Operation parameter group 4 Acceleration/ deceleration time constant 2	Set this parameter when carrying out S-shape acceleration/deceleration. When S-shape acceleration/deceleration is carried out, set the total time of the non-linear parts. When 1 is set in this parameter, linear acceleration/deceleration is carried out. In the handle feed operation mode, this set value is regarded as the time constant for the linear acceleration/deceleration.	1 to 9999 (ms)	1

No.	N	ame	Details	Setting range	Default value
178	TL4	Operation parameter group 4 Torque limit value	Set the motor output torque limit value when operation parameter group 4 is selected. At the default value, the torque is limited at the maximum torque of the motor specifications. Set the default value when torque limit is not especially required. In the stopper method initializing mode in absolute position detection systems, this becomes the torque limit value during stopper operation.	1 to 500 (%)	500
179	OD4	Operation parameter group 4 Excessive error detection width	Set the excessive error detection width when operation parameter group 4 is selected. An excessive error alarm (S03 0052) is detected when the position droop becomes larger than this setting value. In the stopper method initializing mode in absolute position detection systems, this becomes the excessive error detection width during stopper operation.	0 to 32767 (° or mm)	100
180	just4	Operation parameter group 4 Set position output width	The signal indicating that the machine position is at any one of the stations is the set position reached (JST) signal. During automatic operation, the automatic set position reached (JSTA) signal is also output under the same conditions. Set the tolerable values at which these signals are output when operation parameter group 4 is selected. These signals turn OFF when the machine position is separated from the station by more than this value.	0.000 to 99999.999 (° or mm)	0.500
181	near4	Operation parameter group 4 Near set position output width	The signal indicating that the machine position is near any one of the station positions is the near set position (NEAR) signal. Set the tolerable values at which these signals are output when operation parameter group 4 is selected. These values are generally set wider than the set position output width. During operations, this is related to special commands when the station selection is "0".	0.000 to 99999.999 (° or mm)	1.000

No.	Na	me	Details	Setting range	Default value
190	stpos2	Station 2 coordinate value	Set the coordinate value of each station when non-uniform assignment is selected. The station 1 coordinate value is fixed at 0.000	-999999.999 to 99999.999 (° or mm)	0.000
191	stpos3	Station 3 coordinate value	(machine coordinate zero point).		
192	stpos4	Station 4 coordinate value			
193	stpos5	Station 5 coordinate value			
194	stpos6	Station 6 coordinate value			
195	stpos7	Station 7 coordinate value			
196	stpos8	Station 8 coordinate value			
197	stpos9	Station 9 coordinate value			
200	PSWcheck	PSW detection method	This is a HEX setting parameter. Set bits without values. bit F E D C B A 9 8 7 Default 0 0 0 0 0 0 0 0 0	6 5 4 3	their default 2 1 0 0 0 0
			1PSW2is judged by the machine2PSW3position of the command	Meaning when the position swite is judged by the reference of the position (actual position).	ch output nachine

No.	Na	me	Details	Setting range	Default value
201 202	PSW1dog1 PSW1dog2	PSW1 area setting 1 PSW1 area setting 2	When the machine position is in the region between region settings 1 and 2, the position switch of each No. will turn ON. Whether the value of setting 1 is larger than	-99999.999 to 99999.999 (° or mm)	0.000
203 204	PSW2dog1 PSW2dog2	PSW2 area setting 1 PSW2 area setting 2	setting 2 (vice versa) does not affect the position switch operation. For rotation axes, the output turns ON at the region without including 0.000 degree.		
205 206	PSW3dog1 PSW3dog2	PSW3 area setting 1 PSW3 area setting 2			
207 208	PSW4dog1 PSW4dog2	PSW4 area setting 1 PSW4 area setting 2			
209 210	PSW5dog1 PSW5dog2	PSW5 area setting 1 PSW5 area setting 2			
211 212	PSW6dog1 PSW6dog2	PSW6 area setting 1 PSW6 area setting 2			
213 214	PSW7dog1 PSW7dog2	PSW7 area setting 1 PSW7 area setting 2			
215 216	PSW8dog1 PSW8dog2	PSW8 area setting 1 PSW8 area setting 2			
220	push	Stopper amount	Set the command stroke of the stopper operation during stopper positioning operations.	0.000 to 359.999 (° or mm)	0.000
221	pusht1	Stopper standby time	Set the standby time from the stopper starting coordinate positioning to the stopper operation start during stopper positioning operations.	0 to 9999 (ms)	0
222	pusht2	Stopper torque release time	Set the time from the completion of the stopper operation to the changeover of the stopper torque during stopper positioning operations.	0 to 9999 (ms)	0
223	pusht3	Set position signal output delay time	Set the time from the completion of the stopper operation to the output of the automatic set position reached (JSTA), set position reached (JST), and near set position (NEAR) signals during stopper positioning operations.	0 to 9999 (ms)	0

Revision History

Date of revision	Manual No.	Revision details	
Dec. 2000	BNP-B2267*	First edition created.	
Sep. 2003	BNP-B2267A	 The cover (front, spine, back covers) design was changed. "Type", "Independent Product Code" and "Reference No." were added to the back cover. The following parameters were added. 	
		(1) 5. Basic specification parameters	
		#1926 IP address #21025 SmpDelay	
		#1927 Subnet mask #21028 ed_mess	
		#1928 Gateway address #21029 NCname	
		#1929 Port number #21030 AlmHold	
		#21031 UnitMax	
		#21032 UnitNum	
		#21049 SPname	
		 (2) 16. Indexing axis parameters (#26251 ~) (3) 17. Indexing axis position switch (#27701 ~) (4) 18 Indexing axis commands Mistakes, etc. were corrected. 	
Mar.2004	BNP-B2267C	 The contents revised following to the software Ver.C and Ver Sections of servo parameters (section 7 to 9) were revised a over, and reconstructed to "7. Servo Parameters". Sections of spindle parameters (section 10 and 11) were revised all over, and reconstructed to "8. Spindle Parameters "19 Auxiliary Axis Parameters" was revised all over and its section number became "16". Mistakes, etc. were corrected. 	

Notice

Every effort has been made to keep up with software and hardware revisions in the contents described in this manual. However, please understand that in some unavoidable cases simultaneous revision is not possible. Please contact your Mitsubishi Electric dealer with any questions or comments regarding the use of this product.

Duplication Prohibited

This instruction manual may not be reproduced in any form, in part or in whole, without written permission from Mitsubishi Electric Corporation.

© 2000-2004 MITSUBISHI ELECTRIC CORPORATION ALL RIGHTS RESERVED

MODEL	MC6/C64/C64T
MODEL CODE	008-046
Manual No.	BNP-B2267C(ENG)